Pollution of the environment, particularly the soil, appears to be one of the major contemporary issues. In addition, many studies point to the involvement of ecological risk of heavy metals into the food chain throug...Pollution of the environment, particularly the soil, appears to be one of the major contemporary issues. In addition, many studies point to the involvement of ecological risk of heavy metals into the food chain through edible plants like Spinaceae oleraceae L. and Lactuca sativa L.. This paper presents the results of the "ex-situ" application of phytoacumulation on the soils of contaminated terrain using the plant species of spinach (Spinacea oleracea L.) and lettuce (Lactuca sativa L.). Sequestration of arsen from the soil by these plant species was observed through phytoaccumulation factor--PF and limit values (mg/kg). The main task and objective of this research was to establish the level of accumulation of toxic element As from the soil by plants and to calculate the PF factor of transfer. The experiment was set up in the control conditions where the soil from eight contaminated locations was placed in the experimental containers. The AAS method was used to analyze heavy metal in plant material and soil. PF factor values ranged from 0.1 to 1.0 which indicates that the spinach and lettuce plants rechargeable moderate compared to arsenic.展开更多
The selection of adequate plant species is a prerequisite for cleaning-up trace metal contaminated-soils by phytoaccumulation which is a cost-effective and environmentally-friendly technology. The potential of Panicum...The selection of adequate plant species is a prerequisite for cleaning-up trace metal contaminated-soils by phytoaccumulation which is a cost-effective and environmentally-friendly technology. The potential of Panicum maximum, Eleusine indica and Cynodon dactylon to uptake trace metals from the soil of the Akouedo landfill was investigated. The concentrations of trace metals in soil were also considered. Moreover, the accumulation of Zn, Ni, Cu, Pb and Cd was assessed based on bioconcentration factor, translocation factor. The results showed high concentration values in the soil of the abandoned and the operation site of the landfill compare to the control site. The highest concentrations of trace metals in the plant shoot were observed with P. maximum for Ni. In root biomass, Zn, Cu and Cd showed high concentrations with P. maximum, E. indica and C. dactylon. Furthermore, the highest values of bioconcentration factor (BCF) and the translocation factor (TF) for Ni, were respectively 111.98 ± 82.45 and 4.26 ± 1.75 and were recorded with P. maximum. P. maximum, suggesting that it can be considered as a Ni hyperaccumulator.展开更多
Although Brassica juncea (Indian mustard) is reported to be a good accumulator of metals, little is known of the selected varieties of B. juncea (cvs. Rai and BARI-11). This paper investigates the phytoaccumulation of...Although Brassica juncea (Indian mustard) is reported to be a good accumulator of metals, little is known of the selected varieties of B. juncea (cvs. Rai and BARI-11). This paper investigates the phytoaccumulation of arsenic, cadmium and lead by B. juncea (cvs. Rai and BARI-11) parents and F1 hybrids. The experiment was conducted in the hydroponic media in the greenhouse of University of Southampton under a Randomised Block Design. Sodium arsenite, cadmium sulphate and lead nitrate with 0 ppm, 0.5 ppm and 1 ppm were used. The cadmium treated plants were analysed by Varian Atomic absorption spectrophotometer-200. The samples of arsenic and lead were analysed by Inductively Coupled Plasma Atomic Emission Spectrophotometer. The results suggest that arsenic was detected only in the root systems while cadmium and lead were detected both in the root and shoot systems. Significant differences in the uptake were observed for different concentrations. Accumulation of arsenic was detected only in the root systems of B. juncea (cvs. Rai and BARI-11) at lower concentrations. Hence, this can be used as an agriculturally viable and efficient phytoaccumulator in the arsenic affected areas where contamination level is low and the contamination occurs at the rooting level.展开更多
Present study was conducted to investigate the Cadmium (Cd) phytoextraction potential of two plants (Veronica anagallis-aquatic and Epilobium laxum Royle) for Cd removal from induced saline water. In hydroponic system...Present study was conducted to investigate the Cadmium (Cd) phytoextraction potential of two plants (Veronica anagallis-aquatic and Epilobium laxum Royle) for Cd removal from induced saline water. In hydroponic system, various concentrations of the Cd (50, 100, and 150 ppm) and NaCl salt (1000, 3000, and 6000 ppm) were used alone and in various combinations to evaluate the effect of salt (NaCl) concentrations on Cd absorption and accumulation in Veronica anagallis and Epilobium plants. The Cd at higher concentrations (100 and 150 ppm) significantly reduced the growth and biomass of both plants and addition of salt (NaCl) to growth media (Hoagland solution) further reduced the growth. The Cadmium (Cd) translocation factor (TF) of Epilobium plant was more than one (1), while the Veronica plant showed translocation factor less than 0.5. Veronica plant showed higher Bio-concentration factor (BCF) as more than 3.5 and Epilobium plant demonstrated Bio-concentration factor less than 1 (BCF 1 is a threshold limit for a plant to be hyper-accumulator of Cd). Conclusively, the Veronica anagallis plant is reported as Cd hyper-accumulator, while Epilobium laxum plant as non hyper-accumulator on the basis of BCF values in the present findings. Further study on Veronica and Epilobium plants is recommended.展开更多
The restoration of soils polluted by trace metals (Pb and Cd) by phytoremediation is an innovative and ecologically sustainable solution. The objective of the study was to develop a process of phytoaccumulation of tra...The restoration of soils polluted by trace metals (Pb and Cd) by phytoremediation is an innovative and ecologically sustainable solution. The objective of the study was to develop a process of phytoaccumulation of trace metals (Pb and Cd) in soils with the species Panicum maximum. For this purpose, 30 buckets containing soil were used. These included six (06) buckets per dose of soil contamination by Pb and Cd (3 mg/kg and 9 mg/kg of Cd and 100 mg/kg and 300 mg/kg of Pb) and six (6) buckets containing uncontaminated soil (control). During a period of 90 days of experimentation, the concentrations of trace metals in the plant biomass and in the soils were measured. Also, the bioaccumulation (BF) and translocation (TF) factors, the mass of Pb and Cd taken up by the plant were determined. The results showed that the biomass produced was negatively influenced by increasing Pb and Cd concentration. The concentrations of Pb and Cd accumulated by P. maximum varied in the aboveground biomass from 6.48 ± 0.55 to 18.09 ± 0.71 mg/kg (Pb100);from 10.93 ± 0.38 to 23.04 ± 0.79 mg/kg (Pb300);from 0.91 ± 0.02 to 1.50 ± 0.03 mg/kg (Cd3);and from 3.05 ± 0.08 to 5.43 ± 0.09 mg/kg (Cd9) from day 30 to day 90. However, in the root biomass, trace metals (Pb and Cd) ranged from 8.09 ± 0.58 to 22.57 ± 0.86 mg/kg (Pb100);from 29.45 ± 0.49 to 62.35 ± 0.82 mg/kg (Pb300);from 0.66 ± 0.01 to 1.11 ± 0.07 mg/kg (Cd3);and from 2.22 ± 0.08 to 3, 97 ± 0.09 mg/kg (Cd9), from day 30 to day 90. Pb was concentrated in the root biomass and Cd in the aboveground biomass. Bioaccumulation factor values ranged from 0.26 ± 0.02 to 0.99 ± 0.04 (Pb100);from 0.21 ± 0.04 to 0.50 ± 0.06 (Pb300);from 0.83 ± 0.09 to 1.72 ± 0.18 (Cd3);and from 0.70 ± 0.08 to 1.54 ± 0.18 (Cd9). High concentrations of Pb and Cd show a negative effect on the accumulation potential of P. maximum.展开更多
Copper (Cu) contamination in the environment has been increased during the years with agricultural and industrial activities. Biotechnological approaches are needed for bioremediation in these areas. The aims of thi...Copper (Cu) contamination in the environment has been increased during the years with agricultural and industrial activities. Biotechnological approaches are needed for bioremediation in these areas. The aims of this study were i) to evaluate the phytoreme- diation capacity of the high-yielding bioenergy plant castor bean (Ricinus communis L.) in vineyard soils (Inceptisol and Mollisol) contaminated with Cu and a Cu mining waste; ii) to characterize the castor bean as a Cu phytoremediation plant; and iii) to evaluate the nutrient uptake by castor bean. Castor bean plants cultivated in soil with toxic levels of Cu for 57 d exhibited high phytomass production, a high tolerance index of roots' fresh mass and shoots' dry mass, a high level of Cu phytoaccumulation in the roots and also, a robust capacity for Cu phytostabilization. Furthermore, castor bean plants did not significantly deplete soil nutrients (such as N, P, and Mg) during cultivation. Plants cultivated in Inceptisol, Mollisol and Cu mining waste exhibited a strong potential for Cu phytoaccumulation, with values of 5900, 3 052 and 2805 g ha-1, respectively. In addition, the castor bean's elevated phytomass production and strong growth in Cu-contaminated soils indicated a high level of Cu phytoaccumulation and a potential application in biofuels. These findings indicate that the castor bean is a efficient hyperaccumulator of Cu and a potential candidate plant for the phytoremediation of Cu-contaminated soil.展开更多
文摘Pollution of the environment, particularly the soil, appears to be one of the major contemporary issues. In addition, many studies point to the involvement of ecological risk of heavy metals into the food chain through edible plants like Spinaceae oleraceae L. and Lactuca sativa L.. This paper presents the results of the "ex-situ" application of phytoacumulation on the soils of contaminated terrain using the plant species of spinach (Spinacea oleracea L.) and lettuce (Lactuca sativa L.). Sequestration of arsen from the soil by these plant species was observed through phytoaccumulation factor--PF and limit values (mg/kg). The main task and objective of this research was to establish the level of accumulation of toxic element As from the soil by plants and to calculate the PF factor of transfer. The experiment was set up in the control conditions where the soil from eight contaminated locations was placed in the experimental containers. The AAS method was used to analyze heavy metal in plant material and soil. PF factor values ranged from 0.1 to 1.0 which indicates that the spinach and lettuce plants rechargeable moderate compared to arsenic.
文摘The selection of adequate plant species is a prerequisite for cleaning-up trace metal contaminated-soils by phytoaccumulation which is a cost-effective and environmentally-friendly technology. The potential of Panicum maximum, Eleusine indica and Cynodon dactylon to uptake trace metals from the soil of the Akouedo landfill was investigated. The concentrations of trace metals in soil were also considered. Moreover, the accumulation of Zn, Ni, Cu, Pb and Cd was assessed based on bioconcentration factor, translocation factor. The results showed high concentration values in the soil of the abandoned and the operation site of the landfill compare to the control site. The highest concentrations of trace metals in the plant shoot were observed with P. maximum for Ni. In root biomass, Zn, Cu and Cd showed high concentrations with P. maximum, E. indica and C. dactylon. Furthermore, the highest values of bioconcentration factor (BCF) and the translocation factor (TF) for Ni, were respectively 111.98 ± 82.45 and 4.26 ± 1.75 and were recorded with P. maximum. P. maximum, suggesting that it can be considered as a Ni hyperaccumulator.
文摘Although Brassica juncea (Indian mustard) is reported to be a good accumulator of metals, little is known of the selected varieties of B. juncea (cvs. Rai and BARI-11). This paper investigates the phytoaccumulation of arsenic, cadmium and lead by B. juncea (cvs. Rai and BARI-11) parents and F1 hybrids. The experiment was conducted in the hydroponic media in the greenhouse of University of Southampton under a Randomised Block Design. Sodium arsenite, cadmium sulphate and lead nitrate with 0 ppm, 0.5 ppm and 1 ppm were used. The cadmium treated plants were analysed by Varian Atomic absorption spectrophotometer-200. The samples of arsenic and lead were analysed by Inductively Coupled Plasma Atomic Emission Spectrophotometer. The results suggest that arsenic was detected only in the root systems while cadmium and lead were detected both in the root and shoot systems. Significant differences in the uptake were observed for different concentrations. Accumulation of arsenic was detected only in the root systems of B. juncea (cvs. Rai and BARI-11) at lower concentrations. Hence, this can be used as an agriculturally viable and efficient phytoaccumulator in the arsenic affected areas where contamination level is low and the contamination occurs at the rooting level.
文摘Present study was conducted to investigate the Cadmium (Cd) phytoextraction potential of two plants (Veronica anagallis-aquatic and Epilobium laxum Royle) for Cd removal from induced saline water. In hydroponic system, various concentrations of the Cd (50, 100, and 150 ppm) and NaCl salt (1000, 3000, and 6000 ppm) were used alone and in various combinations to evaluate the effect of salt (NaCl) concentrations on Cd absorption and accumulation in Veronica anagallis and Epilobium plants. The Cd at higher concentrations (100 and 150 ppm) significantly reduced the growth and biomass of both plants and addition of salt (NaCl) to growth media (Hoagland solution) further reduced the growth. The Cadmium (Cd) translocation factor (TF) of Epilobium plant was more than one (1), while the Veronica plant showed translocation factor less than 0.5. Veronica plant showed higher Bio-concentration factor (BCF) as more than 3.5 and Epilobium plant demonstrated Bio-concentration factor less than 1 (BCF 1 is a threshold limit for a plant to be hyper-accumulator of Cd). Conclusively, the Veronica anagallis plant is reported as Cd hyper-accumulator, while Epilobium laxum plant as non hyper-accumulator on the basis of BCF values in the present findings. Further study on Veronica and Epilobium plants is recommended.
文摘The restoration of soils polluted by trace metals (Pb and Cd) by phytoremediation is an innovative and ecologically sustainable solution. The objective of the study was to develop a process of phytoaccumulation of trace metals (Pb and Cd) in soils with the species Panicum maximum. For this purpose, 30 buckets containing soil were used. These included six (06) buckets per dose of soil contamination by Pb and Cd (3 mg/kg and 9 mg/kg of Cd and 100 mg/kg and 300 mg/kg of Pb) and six (6) buckets containing uncontaminated soil (control). During a period of 90 days of experimentation, the concentrations of trace metals in the plant biomass and in the soils were measured. Also, the bioaccumulation (BF) and translocation (TF) factors, the mass of Pb and Cd taken up by the plant were determined. The results showed that the biomass produced was negatively influenced by increasing Pb and Cd concentration. The concentrations of Pb and Cd accumulated by P. maximum varied in the aboveground biomass from 6.48 ± 0.55 to 18.09 ± 0.71 mg/kg (Pb100);from 10.93 ± 0.38 to 23.04 ± 0.79 mg/kg (Pb300);from 0.91 ± 0.02 to 1.50 ± 0.03 mg/kg (Cd3);and from 3.05 ± 0.08 to 5.43 ± 0.09 mg/kg (Cd9) from day 30 to day 90. However, in the root biomass, trace metals (Pb and Cd) ranged from 8.09 ± 0.58 to 22.57 ± 0.86 mg/kg (Pb100);from 29.45 ± 0.49 to 62.35 ± 0.82 mg/kg (Pb300);from 0.66 ± 0.01 to 1.11 ± 0.07 mg/kg (Cd3);and from 2.22 ± 0.08 to 3, 97 ± 0.09 mg/kg (Cd9), from day 30 to day 90. Pb was concentrated in the root biomass and Cd in the aboveground biomass. Bioaccumulation factor values ranged from 0.26 ± 0.02 to 0.99 ± 0.04 (Pb100);from 0.21 ± 0.04 to 0.50 ± 0.06 (Pb300);from 0.83 ± 0.09 to 1.72 ± 0.18 (Cd3);and from 0.70 ± 0.08 to 1.54 ± 0.18 (Cd9). High concentrations of Pb and Cd show a negative effect on the accumulation potential of P. maximum.
基金Supported by the Coordenao de Aperfeic oamento de Pessoal de N'vel Superior (CAPES) of Brazil and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil
文摘Copper (Cu) contamination in the environment has been increased during the years with agricultural and industrial activities. Biotechnological approaches are needed for bioremediation in these areas. The aims of this study were i) to evaluate the phytoreme- diation capacity of the high-yielding bioenergy plant castor bean (Ricinus communis L.) in vineyard soils (Inceptisol and Mollisol) contaminated with Cu and a Cu mining waste; ii) to characterize the castor bean as a Cu phytoremediation plant; and iii) to evaluate the nutrient uptake by castor bean. Castor bean plants cultivated in soil with toxic levels of Cu for 57 d exhibited high phytomass production, a high tolerance index of roots' fresh mass and shoots' dry mass, a high level of Cu phytoaccumulation in the roots and also, a robust capacity for Cu phytostabilization. Furthermore, castor bean plants did not significantly deplete soil nutrients (such as N, P, and Mg) during cultivation. Plants cultivated in Inceptisol, Mollisol and Cu mining waste exhibited a strong potential for Cu phytoaccumulation, with values of 5900, 3 052 and 2805 g ha-1, respectively. In addition, the castor bean's elevated phytomass production and strong growth in Cu-contaminated soils indicated a high level of Cu phytoaccumulation and a potential application in biofuels. These findings indicate that the castor bean is a efficient hyperaccumulator of Cu and a potential candidate plant for the phytoremediation of Cu-contaminated soil.