The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented...The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.展开更多
We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the...We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the presence of 100 ps(pico-second) and 100 ns(nano-second) laser pulses is described in the form of rate equations. We provide a brief idea of how the optical energy transfer takes place in the light-matter interaction and we also discuss the absorption as a function of pulse width and repetition rate. We also plot the z-scan transmittance curve as a function of number of excitation pulses participating in the absorption.展开更多
A compact pulse radiolysis apparatus using a BNL-type s-band photocathode RF gun is now under development at Waseda University.The laser pulse is used for excitation of the photocathode and for generation of white lig...A compact pulse radiolysis apparatus using a BNL-type s-band photocathode RF gun is now under development at Waseda University.The laser pulse is used for excitation of the photocathode and for generation of white light,which is used for analyzing light in the pulse radiolysis.展开更多
文摘The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.
文摘We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the presence of 100 ps(pico-second) and 100 ns(nano-second) laser pulses is described in the form of rate equations. We provide a brief idea of how the optical energy transfer takes place in the light-matter interaction and we also discuss the absorption as a function of pulse width and repetition rate. We also plot the z-scan transmittance curve as a function of number of excitation pulses participating in the absorption.
文摘A compact pulse radiolysis apparatus using a BNL-type s-band photocathode RF gun is now under development at Waseda University.The laser pulse is used for excitation of the photocathode and for generation of white light,which is used for analyzing light in the pulse radiolysis.