In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving...In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving numerical method is proposed. An e-uniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are presented, which are in agreement with the theoretical predictions.展开更多
In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemis...In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemistry.We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint.Matched asymptotic approximations for the problem are presented to locate the positions and characterize the widths of boundary layers and/or interior layers in the solution.A uniformly convergent numerical method is proposed by using the normalized gradient flow and piecewise uniform mesh techniques based on the asymptotic approximations for the problem.Extensive numerical results are reported to demonstrate the effectiveness of our numerical method for the problems.Finally,the method is applied to compute ground and excited states of Bose-Einstein condensation in the semiclassical regime and some conclusive findings are reported.展开更多
A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically The numerical method consists of a special piecewise uniform mesh co...A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically The numerical method consists of a special piecewise uniform mesh condensing in a neighbourhood of the parabolic layer and a standard finite difference operator satisfying a discrete maximum principle. The numerical computations demonstrate numerically that the method is epsilon-uniform in the sense that the Fate of convergence and error constant of the method are independent of the singular perturbation parameter epsilon. This means that no matter how small the singular perturbation parameter epsilon is, the numerical method produces solutions with guaranteed accuracy depending solely on the number of mesh points used.展开更多
基金the Council of Scientific and Industrial Research,New Delhi,India for its financial support.
文摘In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving numerical method is proposed. An e-uniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are presented, which are in agreement with the theoretical predictions.
基金Singapore Ministry of Education grant No.R-146-000-083-112 and would like to thank Professor Tao Tang for very helpful discussion on the subject.
文摘In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemistry.We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint.Matched asymptotic approximations for the problem are presented to locate the positions and characterize the widths of boundary layers and/or interior layers in the solution.A uniformly convergent numerical method is proposed by using the normalized gradient flow and piecewise uniform mesh techniques based on the asymptotic approximations for the problem.Extensive numerical results are reported to demonstrate the effectiveness of our numerical method for the problems.Finally,the method is applied to compute ground and excited states of Bose-Einstein condensation in the semiclassical regime and some conclusive findings are reported.
文摘A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically The numerical method consists of a special piecewise uniform mesh condensing in a neighbourhood of the parabolic layer and a standard finite difference operator satisfying a discrete maximum principle. The numerical computations demonstrate numerically that the method is epsilon-uniform in the sense that the Fate of convergence and error constant of the method are independent of the singular perturbation parameter epsilon. This means that no matter how small the singular perturbation parameter epsilon is, the numerical method produces solutions with guaranteed accuracy depending solely on the number of mesh points used.