One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the flu...One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.展开更多
Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefi...Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefit for the stability of earth structures.This study investigates the tensile and shear strengths of an untreated and lime-treated(3%of lime)plastic clay at different curing times(7 d,56 d and 300 d),through triaxial tension and compression tests.Triaxial tension tests are performed using“diabolo-shaped”soil samples with reduced central section,such that the central part of the specimen can be under axial tension while both end-sections remain in axial compression.Consolidated undrained(CU)conditions with measurement of pore water pressure allow analyzing the failure conditions through effective stress and total stress approaches.The results of triaxial tension tests reveal that the failure occurs under tensile mode at low confining pressure while extensional shear failure mode is observed under higher confining pressure.Consequently,a classical Mohr-Coulomb shear failure criterion must be combined with a cut-off tensile strength criterion that is not affected by the confining pressure.When comparing shear failure under compression and tension,a slight anisotropy is observed.展开更多
The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–...The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–formation interface.In this study,a water-borne epoxy resin was applied as a strengthening material to reinforce the weakly consolidated shallow formation and protect the cement sheath from potential failure.The mechanical properties of the unconsolidated clay were tested,including their changes with increases in the temperature and curing time.In addition,the effects of the seawater,cement slurry alkaline filtrate,and saltwater drilling fluid were evaluated.As confirmed by the results,the strengthening fluid was excellent at reinforcing the unconsolidated clay,with a compressive strength of 2.49 MPa(after curing for 7 days),even at a dosage of 5%.A cement slurry filtrate with a high pH was suitable to produce the required strengthening of the formation,especially its early age strength.It should also be pointed out that the used fluid exhibited good compatibility with the saltwater drilling fluid and seawater behaved well as a diluent for the strengthening fluid.展开更多
Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource...Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR).展开更多
Freight transportation in urban areas has increased significantly in a shorter period due to the widespread use of e-commerce, fast delivery, and population growth. Recently, a noticeable government initiative aimed a...Freight transportation in urban areas has increased significantly in a shorter period due to the widespread use of e-commerce, fast delivery, and population growth. Recently, a noticeable government initiative aimed at creating an effective, acceptable, and sustainable city logistics policy. This paper examines freight consolidation as a transportation strategy for optimizing last-mile delivery costs. Freight consolidation involves combining smaller shipments from various origins into a single, larger shipment for more efficient transportation to a common destination. This approach is particularly beneficial for last-mile delivery, where frequent deliveries of smaller quantities are frequently visible. Finally, we provide an illustrative example targeting urban freight stakeholders for practicing possible consolidation methodology. The result in the illustrative example shows that freight with 3-day consolidation, despite the delay penalty, is cheaper than daily shipping, and both are cheaper than 2-day consolidated shipping. The study will benefit urban businesses and freight services.展开更多
The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for...The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.展开更多
The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefact...The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon.展开更多
Shape irregularity,a sub-factor of parcel fragmentation is a problem that hinders sustainable agriculture and is solved using land consolidation projects.Determination of the parcel shape degree contributes significan...Shape irregularity,a sub-factor of parcel fragmentation is a problem that hinders sustainable agriculture and is solved using land consolidation projects.Determination of the parcel shape degree contributes significantly to spatial prioritization where there is also a high probability of achieving positive effects of consolidation projects.This study aims to determine the shape degree of the agricultural parcels both at singular and rural county scales in Tekirdag Province,Turkey in 2020 by combining the parcel shape index(PSI) with the minimum bounding geometry index(MBG) to improve parcel scores.Hot-spot zones of the highly irregular and near optimum parcels were also determined using Getis-Ord G_(i)^(*) statistic.The parcel degrees were classified into four categories,namely highly irregular,irregular,regular and near optimum.The obtained unweighted scores of the parameters exhibit deviations from the expected values.After weighting by pairwise comparison,the values approached ideal scores.Among 346 740 parcels,53% were highly irregular and irregular and 47% were regular and near optimum shapes after weighting whereas these were 70% and 30%,respectively before weighting.The average parcel degree of 63 rural counties was regular while the average parcel degree of the remaining 264 rural counties was irregular.The combined use of PSI and MBG index improved the correctness of the parcel shape score.It could be suggested to use as a tool in land consolidation prioritization.展开更多
Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditi...Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.展开更多
Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C part...Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.展开更多
复旦大学主编的《大学英语》精读第2册中的第1课 Is There Life on Earth 是一篇读来令人捧腹、读后却让人深思的幽默短文。专栏作家 Art Buchwald以独特的视角,犀利的笔锋,借金星人之口向世人指出了地球污染的严重性。这篇短文为什么...复旦大学主编的《大学英语》精读第2册中的第1课 Is There Life on Earth 是一篇读来令人捧腹、读后却让人深思的幽默短文。专栏作家 Art Buchwald以独特的视角,犀利的笔锋,借金星人之口向世人指出了地球污染的严重性。这篇短文为什么会这样轻松幽默却又切中要害呢?除了作者虚构的金星人举办的记者招待会和严肃的科学语言以外,还要归功于作者对仿拟(Parody)这种修辞方法的娴熟运用。展开更多
Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stre...Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway.展开更多
Introduction Consolidated Standards of Reporting Trials (CONSORT), encompasses various initiatives developed by the CONSORT Group to alleviate the problems arising from inadequate reporting of randomized controlled ...Introduction Consolidated Standards of Reporting Trials (CONSORT), encompasses various initiatives developed by the CONSORT Group to alleviate the problems arising from inadequate reporting of randomized controlled trials (RCTs).展开更多
In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteris...In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.展开更多
The evaluation of consolidated cultivated land quality can provide basic information for how to perfect the program of land consolidation,as well as a reference for the dynamic monitoring of farmland quality in mining...The evaluation of consolidated cultivated land quality can provide basic information for how to perfect the program of land consolidation,as well as a reference for the dynamic monitoring of farmland quality in mining area. Based on the consultation and analysis of related literature,we can conclude that: firstly,most scholars focus on soil consolidation,while consider little about land use and economic condition. Secondly,foreign scholars usually use crop yields to judge the success of land consolidation,while domestic scholars have been evaluated the quality of consolidated cultivated land synthetically from several aspects,such as soil fertility,soil environmental quality,and farmland infrastructure conditions. Specifically,most of the evaluations are static,and indicators are different. Besides,the quality of consolidated cultivated land is generally low,and it lacks systematic research on technologies for improving quality of cultivated land consolidated from coal mining subsided land. It is concluded that future researches should focus on establishing scientific and feasible evaluation system to realize comparison of quality change in the dynamic course of " undisturbed-subsided-consolidated" cultivated land in coal mining areas,as well as technologies for improving quality of cultivated land consolidated from coal mining subsided land.展开更多
Taking lightning-protection engineering of Wuhan Changshankou landfill and incineration plants for the example,in this article,we have discussed the integrated technology of direct lightning protection by early stream...Taking lightning-protection engineering of Wuhan Changshankou landfill and incineration plants for the example,in this article,we have discussed the integrated technology of direct lightning protection by early streamer emission lightning rod,lifting lightning rod and mobile lightning rod. Additionally,lightning protection methods and measures of landfill with large receiving area of lightning strike and landfill gas and incineration plant with irregular landfill cell are explored.展开更多
In order to identify the critical properties and failure criteria of in-situ silt under vehicle or wave loading, anisotropically consolidated silt under undrained cyclic principal stress rotation was studied with holl...In order to identify the critical properties and failure criteria of in-situ silt under vehicle or wave loading, anisotropically consolidated silt under undrained cyclic principal stress rotation was studied with hollow cylinder dynamic tests. The results show that for the slightly anisotropically consolidated samples with consolidation ratios no larger than 1.5, the structure collapses and the deviator strain and pore pressure increase sharply to fail after collapse. For the highly anisotropically consolidated samples with consolidation ratios larger than 1.5, the strain increases steadily to high values, which shows characteristics of ductile failure. 4% is suggested to be the threshold value of deviator stain to determine the occurrence of collapse. The normalized relationship between pore pressure and deviator strain can be correlated by a power fimction for all the anisotropically consolidated samples. Based on it, for the highly anisotropically consolidated samples, the appearance of inflection point on the power function curve is suggested to sign the failure. It can be predicted through the convex pore pressure at this point, whose ratio to the ultimate pore pressure is around linear with the consolidation ratio in spite of the dynamic shear stress level. And the corresponding deviator strain is between 3% and 6%. The strain failure criterion can also be adopted, but the limited value of stain should be determined according to engineering practice. As for the slightly anisotropically consolidated samples, the turning points appear after collapse. So, the failure is suggested to be defined with the occurrence of collapse and the collapse pore pressure can be predicted with the ultimate pore pressure and consolidation ratio.展开更多
To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and p...To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.展开更多
Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft c...Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA).The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation)and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied.The test results show that,during pure principal stress axis rotation,the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress;the values of major principal stress anglesα,corresponding to the peak value of the pore water pressure in a certain cycle,are different with different initial consolidation angles;the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b.With the fixed initial consolidation angle ζ,the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values.With the increase of cycles,the difference value of pore water pressure between b=0 and b=1 in each cycle increases gradually with different initial consolidation angles ζ.While with different initial consolidation anglesζ,the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1;the variation of maximum pore water pressure withζis significantly affected by the value of b;the value of maximum pore water pressure increases with the cycle number increases under all test conditions,but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b.展开更多
文摘One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.
文摘Lime-treatment of clayey soil significantly increases its shear and tensile strengths.Consequently,the tensile strength of lime-treated soils deserves careful investigation because it may provide an appreciable benefit for the stability of earth structures.This study investigates the tensile and shear strengths of an untreated and lime-treated(3%of lime)plastic clay at different curing times(7 d,56 d and 300 d),through triaxial tension and compression tests.Triaxial tension tests are performed using“diabolo-shaped”soil samples with reduced central section,such that the central part of the specimen can be under axial tension while both end-sections remain in axial compression.Consolidated undrained(CU)conditions with measurement of pore water pressure allow analyzing the failure conditions through effective stress and total stress approaches.The results of triaxial tension tests reveal that the failure occurs under tensile mode at low confining pressure while extensional shear failure mode is observed under higher confining pressure.Consequently,a classical Mohr-Coulomb shear failure criterion must be combined with a cut-off tensile strength criterion that is not affected by the confining pressure.When comparing shear failure under compression and tension,a slight anisotropy is observed.
基金supported by the Natural Science Foundation of China(51804332,51974355)Major Scientific and Technological Projects of CNPC(ZD2019-184-003)+1 种基金Provincial Geological Exploration Fund of Guizhou Province(208-9912-JBN-UTS0)Shandong Provincial Natural Science Foundation(ZR2017LEE005).
文摘The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–formation interface.In this study,a water-borne epoxy resin was applied as a strengthening material to reinforce the weakly consolidated shallow formation and protect the cement sheath from potential failure.The mechanical properties of the unconsolidated clay were tested,including their changes with increases in the temperature and curing time.In addition,the effects of the seawater,cement slurry alkaline filtrate,and saltwater drilling fluid were evaluated.As confirmed by the results,the strengthening fluid was excellent at reinforcing the unconsolidated clay,with a compressive strength of 2.49 MPa(after curing for 7 days),even at a dosage of 5%.A cement slurry filtrate with a high pH was suitable to produce the required strengthening of the formation,especially its early age strength.It should also be pointed out that the used fluid exhibited good compatibility with the saltwater drilling fluid and seawater behaved well as a diluent for the strengthening fluid.
基金funded by Science and Technology Department of Shaanxi Province,Grant Numbers:2019GY-020 and 2024JC-YBQN-0730.
文摘Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR).
文摘Freight transportation in urban areas has increased significantly in a shorter period due to the widespread use of e-commerce, fast delivery, and population growth. Recently, a noticeable government initiative aimed at creating an effective, acceptable, and sustainable city logistics policy. This paper examines freight consolidation as a transportation strategy for optimizing last-mile delivery costs. Freight consolidation involves combining smaller shipments from various origins into a single, larger shipment for more efficient transportation to a common destination. This approach is particularly beneficial for last-mile delivery, where frequent deliveries of smaller quantities are frequently visible. Finally, we provide an illustrative example targeting urban freight stakeholders for practicing possible consolidation methodology. The result in the illustrative example shows that freight with 3-day consolidation, despite the delay penalty, is cheaper than daily shipping, and both are cheaper than 2-day consolidated shipping. The study will benefit urban businesses and freight services.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52178373 and 51878657).
文摘The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.
基金The National Natural Science Foundation of China under contract No.41976049the Opening Foundation of Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province under contract No.HBMESO2306。
文摘The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon.
文摘Shape irregularity,a sub-factor of parcel fragmentation is a problem that hinders sustainable agriculture and is solved using land consolidation projects.Determination of the parcel shape degree contributes significantly to spatial prioritization where there is also a high probability of achieving positive effects of consolidation projects.This study aims to determine the shape degree of the agricultural parcels both at singular and rural county scales in Tekirdag Province,Turkey in 2020 by combining the parcel shape index(PSI) with the minimum bounding geometry index(MBG) to improve parcel scores.Hot-spot zones of the highly irregular and near optimum parcels were also determined using Getis-Ord G_(i)^(*) statistic.The parcel degrees were classified into four categories,namely highly irregular,irregular,regular and near optimum.The obtained unweighted scores of the parameters exhibit deviations from the expected values.After weighting by pairwise comparison,the values approached ideal scores.Among 346 740 parcels,53% were highly irregular and irregular and 47% were regular and near optimum shapes after weighting whereas these were 70% and 30%,respectively before weighting.The average parcel degree of 63 rural counties was regular while the average parcel degree of the remaining 264 rural counties was irregular.The combined use of PSI and MBG index improved the correctness of the parcel shape score.It could be suggested to use as a tool in land consolidation prioritization.
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.
基金Project(51175138)supported by the National Natural Science Foundation of ChinaProjects(2012HGZX0030,2013HGCH0011)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20100111110003)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.
文摘复旦大学主编的《大学英语》精读第2册中的第1课 Is There Life on Earth 是一篇读来令人捧腹、读后却让人深思的幽默短文。专栏作家 Art Buchwald以独特的视角,犀利的笔锋,借金星人之口向世人指出了地球污染的严重性。这篇短文为什么会这样轻松幽默却又切中要害呢?除了作者虚构的金星人举办的记者招待会和严肃的科学语言以外,还要归功于作者对仿拟(Parody)这种修辞方法的娴熟运用。
基金Project(51174128)supported by the National Natural Science Foundation of ChinaProject(20123718110007)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway.
文摘Introduction Consolidated Standards of Reporting Trials (CONSORT), encompasses various initiatives developed by the CONSORT Group to alleviate the problems arising from inadequate reporting of randomized controlled trials (RCTs).
基金Financial support for this work,provided by the National Natural Science Foundation of China (No.50534040)the Project of the Science and Technology Ministry of China(No.2006BAB16B01)the Post Graduate Research Project of Jiangsu Province (No.CX08B_103Z),
文摘In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.
基金Supported by the National Science and Technology Project in the Twelfth Five-Year Plan Period(Grant No.:2011BAD04B03)
文摘The evaluation of consolidated cultivated land quality can provide basic information for how to perfect the program of land consolidation,as well as a reference for the dynamic monitoring of farmland quality in mining area. Based on the consultation and analysis of related literature,we can conclude that: firstly,most scholars focus on soil consolidation,while consider little about land use and economic condition. Secondly,foreign scholars usually use crop yields to judge the success of land consolidation,while domestic scholars have been evaluated the quality of consolidated cultivated land synthetically from several aspects,such as soil fertility,soil environmental quality,and farmland infrastructure conditions. Specifically,most of the evaluations are static,and indicators are different. Besides,the quality of consolidated cultivated land is generally low,and it lacks systematic research on technologies for improving quality of cultivated land consolidated from coal mining subsided land. It is concluded that future researches should focus on establishing scientific and feasible evaluation system to realize comparison of quality change in the dynamic course of " undisturbed-subsided-consolidated" cultivated land in coal mining areas,as well as technologies for improving quality of cultivated land consolidated from coal mining subsided land.
文摘Taking lightning-protection engineering of Wuhan Changshankou landfill and incineration plants for the example,in this article,we have discussed the integrated technology of direct lightning protection by early streamer emission lightning rod,lifting lightning rod and mobile lightning rod. Additionally,lightning protection methods and measures of landfill with large receiving area of lightning strike and landfill gas and incineration plant with irregular landfill cell are explored.
基金Foundation item: Project(50909039) supported by the National Natural Science Foundation of China Project(IRTl125) supported by Program for Changjiang Scholars and Innovative Team in University of China
文摘In order to identify the critical properties and failure criteria of in-situ silt under vehicle or wave loading, anisotropically consolidated silt under undrained cyclic principal stress rotation was studied with hollow cylinder dynamic tests. The results show that for the slightly anisotropically consolidated samples with consolidation ratios no larger than 1.5, the structure collapses and the deviator strain and pore pressure increase sharply to fail after collapse. For the highly anisotropically consolidated samples with consolidation ratios larger than 1.5, the strain increases steadily to high values, which shows characteristics of ductile failure. 4% is suggested to be the threshold value of deviator stain to determine the occurrence of collapse. The normalized relationship between pore pressure and deviator strain can be correlated by a power fimction for all the anisotropically consolidated samples. Based on it, for the highly anisotropically consolidated samples, the appearance of inflection point on the power function curve is suggested to sign the failure. It can be predicted through the convex pore pressure at this point, whose ratio to the ultimate pore pressure is around linear with the consolidation ratio in spite of the dynamic shear stress level. And the corresponding deviator strain is between 3% and 6%. The strain failure criterion can also be adopted, but the limited value of stain should be determined according to engineering practice. As for the slightly anisotropically consolidated samples, the turning points appear after collapse. So, the failure is suggested to be defined with the occurrence of collapse and the collapse pore pressure can be predicted with the ultimate pore pressure and consolidation ratio.
基金financially supported by the National Natural Science Foundation of China(Grant No.51774307,52074331,42002182)partially supported by Major Special Projects of CNPC,China(ZD2019-184)。
文摘To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFC1510803-2)the National Natural Science Foundation of China(Grant Nos.51639002 and 51809034)+3 种基金the China Postdoctoral Science Foundation(Grant No.2019M662533)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017012)the Open Fund of State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2014)。
文摘Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA).The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation)and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied.The test results show that,during pure principal stress axis rotation,the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress;the values of major principal stress anglesα,corresponding to the peak value of the pore water pressure in a certain cycle,are different with different initial consolidation angles;the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b.With the fixed initial consolidation angle ζ,the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values.With the increase of cycles,the difference value of pore water pressure between b=0 and b=1 in each cycle increases gradually with different initial consolidation angles ζ.While with different initial consolidation anglesζ,the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1;the variation of maximum pore water pressure withζis significantly affected by the value of b;the value of maximum pore water pressure increases with the cycle number increases under all test conditions,but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b.