Taking the hot working die steel (HWDS) 4Cr3Mo2NbVNi as an example, the phase electron structures (PES) and the biphase interface electron structures (BIES) of Mo2C and V4 C3 , which are two kinds of important c...Taking the hot working die steel (HWDS) 4Cr3Mo2NbVNi as an example, the phase electron structures (PES) and the biphase interface electron structures (BIES) of Mo2C and V4 C3 , which are two kinds of important carbides precipitated during tempering in steel were calculated, on the basis of the empirical electron theory of solids and molecules and the improved TFD theory. The influence of Mo2 C and V4 C3 on the mechanical properties of HWDS has been analyzed at electron structure level, and the fundamental reason that the characteristic of the PES and the BIES of carbides decides the behavior of them has been revealed.展开更多
The effects of die structure such as the height of the welding,the welding angle and chamber the shape of the bridge on the welding quality of profiles were investigated by means of the commercial software DEFORM-3D.T...The effects of die structure such as the height of the welding,the welding angle and chamber the shape of the bridge on the welding quality of profiles were investigated by means of the commercial software DEFORM-3D.The numerical simulation results show that the welding quality of the hollow profiles has great sensitive to the die structure.With increasing the welding chamber height and decreasing the welding angle of the die leg can improve the welding quality.In addition,the welding quality index k of the new designed shape of the die leg is little down from 4.1 to 3.9 comparing the standard leg.展开更多
The structures in vacuum-assist high-pressure die casting (HPDC) AM60B alloy were studied by using an optical microscope and a scanning electron microscope with an energy dispersive spectrometer. It was found that t...The structures in vacuum-assist high-pressure die casting (HPDC) AM60B alloy were studied by using an optical microscope and a scanning electron microscope with an energy dispersive spectrometer. It was found that the HPDC under the vacuum could significantly change the morphology and distribution of the microstructure. For both conventional and vacuum-assist HPDC processes, the externally solidified crystals (ESCs) tended to aggregate in the center along the thickness direction of the castings. Besides, the aggregation was more pronounced, and the number of ESCs decreased, and the ESCs tended to become smaller and more globular, as the distance between the specimen location and runner increased. Compared with the conventional castings, the vacuum-assist HPDC can significantly reduce the size and amount of ESCs, and the ESCs tended to be more globular. For the distribution of ESCs along the thickness of the specimens, the aggregation tendency was more pronounced in vacuum-assist die castings than that in conventional castings. Besides, the distribution of ESCs at different locations was more converged in the vacuum-assist HPDC than that in the conventional HPDC.展开更多
Isotropic magnets were prepared from melt-spun powders at different hot pressing temperatures from 550 to 700 ℃, then upset into fully dense anisotropic magnets at the same die-upsetting temperature of 850 ℃. Die-up...Isotropic magnets were prepared from melt-spun powders at different hot pressing temperatures from 550 to 700 ℃, then upset into fully dense anisotropic magnets at the same die-upsetting temperature of 850 ℃. Die-upset magnets had the characteristics of inhomogeneous microstructure, including well-aligned grains structure and nonaligned grains layers transverse to press direction, which was quasi-periodic layer structure with a total length of 5-15 μm. Nonaligned grains layers were mainly made of large grains and had higher Nd content. To clearly understand the formation of layer structure, the microstructure of isotropic precursors with different hot pressing temperatures and their subsequent die-upset magnets was investigated. A new interpretation for the formation of layer structure was proposed in this paper: the layer structure was correlated to the original ribbon interface which was divided into three types based on the contact forms. Because of the incomplete contact of neighboring ribbons, concentration of stress occurred in the contacted points and the Nd-rich phase was squeezed into interspaces at high temperature under stress. Due to the release of interfacial energy and the fluidity of enough Nd-rich liquid phases, the nonaligned layers with large grains formed both in hot compaction and subsequent hot deformation process. The layer structure affected the magnetic properties of die-upset magnets. With increase of the hot pressing temperature, the nonaligned grains layers became thicker, and the magnetic performance of die-upset magnets decreased. It was necessary to reduce the thickness of large grains layers for the preparation of high-performance die-upset magnets.展开更多
基金ItemSponsored by National Natural Science Foundation of China (50271030) Provincial Natural Science Foundation ofLiaoning Province of China (972072)
文摘Taking the hot working die steel (HWDS) 4Cr3Mo2NbVNi as an example, the phase electron structures (PES) and the biphase interface electron structures (BIES) of Mo2C and V4 C3 , which are two kinds of important carbides precipitated during tempering in steel were calculated, on the basis of the empirical electron theory of solids and molecules and the improved TFD theory. The influence of Mo2 C and V4 C3 on the mechanical properties of HWDS has been analyzed at electron structure level, and the fundamental reason that the characteristic of the PES and the BIES of carbides decides the behavior of them has been revealed.
基金Founded by the National Key Technology R&D Program in the 11th Five Year Plan of China(2007BAE38B00)
文摘The effects of die structure such as the height of the welding,the welding angle and chamber the shape of the bridge on the welding quality of profiles were investigated by means of the commercial software DEFORM-3D.The numerical simulation results show that the welding quality of the hollow profiles has great sensitive to the die structure.With increasing the welding chamber height and decreasing the welding angle of the die leg can improve the welding quality.In addition,the welding quality index k of the new designed shape of the die leg is little down from 4.1 to 3.9 comparing the standard leg.
基金the financial support of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No. 2012ZX04012011)the National Natural Science Foundation of China(Grant No.51275269)the Independent Research Program of Tsinghua University(Grant No.20121087918)
文摘The structures in vacuum-assist high-pressure die casting (HPDC) AM60B alloy were studied by using an optical microscope and a scanning electron microscope with an energy dispersive spectrometer. It was found that the HPDC under the vacuum could significantly change the morphology and distribution of the microstructure. For both conventional and vacuum-assist HPDC processes, the externally solidified crystals (ESCs) tended to aggregate in the center along the thickness direction of the castings. Besides, the aggregation was more pronounced, and the number of ESCs decreased, and the ESCs tended to become smaller and more globular, as the distance between the specimen location and runner increased. Compared with the conventional castings, the vacuum-assist HPDC can significantly reduce the size and amount of ESCs, and the ESCs tended to be more globular. For the distribution of ESCs along the thickness of the specimens, the aggregation tendency was more pronounced in vacuum-assist die castings than that in conventional castings. Besides, the distribution of ESCs at different locations was more converged in the vacuum-assist HPDC than that in the conventional HPDC.
基金Project supported by National High-Tech R&D Program of China(2010AA03A401)the National Natural Science Foundation of China(50931001,51241009)
文摘Isotropic magnets were prepared from melt-spun powders at different hot pressing temperatures from 550 to 700 ℃, then upset into fully dense anisotropic magnets at the same die-upsetting temperature of 850 ℃. Die-upset magnets had the characteristics of inhomogeneous microstructure, including well-aligned grains structure and nonaligned grains layers transverse to press direction, which was quasi-periodic layer structure with a total length of 5-15 μm. Nonaligned grains layers were mainly made of large grains and had higher Nd content. To clearly understand the formation of layer structure, the microstructure of isotropic precursors with different hot pressing temperatures and their subsequent die-upset magnets was investigated. A new interpretation for the formation of layer structure was proposed in this paper: the layer structure was correlated to the original ribbon interface which was divided into three types based on the contact forms. Because of the incomplete contact of neighboring ribbons, concentration of stress occurred in the contacted points and the Nd-rich phase was squeezed into interspaces at high temperature under stress. Due to the release of interfacial energy and the fluidity of enough Nd-rich liquid phases, the nonaligned layers with large grains formed both in hot compaction and subsequent hot deformation process. The layer structure affected the magnetic properties of die-upset magnets. With increase of the hot pressing temperature, the nonaligned grains layers became thicker, and the magnetic performance of die-upset magnets decreased. It was necessary to reduce the thickness of large grains layers for the preparation of high-performance die-upset magnets.