Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic an...The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation.展开更多
A novel seismic design method, namely split-pier seismic design, is proposed. A vertical gap and connect elements are set in split-piers. The lateral stiffness of piers is reduced by cracking of the connect elements u...A novel seismic design method, namely split-pier seismic design, is proposed. A vertical gap and connect elements are set in split-piers. The lateral stiffness of piers is reduced by cracking of the connect elements under severe earthquake, and the seismic response of bridges is reduced by avoiding the site predominant periods. A model of tied-arch rigid frame bridge with split-piers was designed. Seismic performance was investigated by pseudo-static experimentation on the scale model, The failure process of split-piers, the hysteresis characteristic and the effect of split-piers on the superstructure are presented. Results show that the split-pier has better seismic performance than common ductile piers do.展开更多
To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the ste...To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.展开更多
In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled ci...In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.展开更多
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) anal...In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.展开更多
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were f...An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.展开更多
Experimental investigations have been carried out to study morpho-hydraulic characteristics such as scour geometry and turbulent flow properties around tandem piers in alluvial channels. Experiments were carried out i...Experimental investigations have been carried out to study morpho-hydraulic characteristics such as scour geometry and turbulent flow properties around tandem piers in alluvial channels. Experiments were carried out in a plane sand bed with two circular piers of same diameter arranged in tandem manner under no seepage, 10% seepage and 20% seepage conditions. Downward seepage minimizes the scour depth around piers and restrains the development of scour depth with time. Strong reversal flow is found near the bed at upstream of piers and near free surface at downstream of piers where velocity and Reynolds shear stress are found to be negative which reduce in magnitude with downward seepage. The flow is more critical within the gap between two piers where velocity is lesser near free surface and gradually increasing towards bed. Quadrant analysis shows that contribution of each event to the total Reynolds shear stress increases with downward seepage. Sedimentation effect prevails within the scour hole whereas outside the scour hole erosive forces become more dominant. Reduced reversal flow at upstream of pier because of downward seepage results in decreasing higher order moments and turbulent kinetic energy. At downstream of piers, secondary currents are dominant due to wake vortices. Strouhal number decreases in case of seepage runs than no seepage condition.展开更多
As the main seismic component of a bridge,seismic damage to the bridge pier has a greater effect on its subsequent service.In the offshore chloride environment,the issues(e.g.,reinforcement bar corrosion and attenuati...As the main seismic component of a bridge,seismic damage to the bridge pier has a greater effect on its subsequent service.In the offshore chloride environment,the issues(e.g.,reinforcement bar corrosion and attenuation of concrete strength)of piers caused by chloride ion seriously curtail the normal service life and deteriorate the anti-seismic property of bridge structures.The engineered cementitious composite(ECC)-reinforced concrete(RC)composite pier with high strength reinforcement bars(HSRB)is expected to solve the above problems.This study aims to clarify the time-varying seismic vulnerability(SV)of the HSRBECC-RC composite pier during its full life cycle(FLC).Based on OpenSees,the refined finite element analysis models of RC pier,ECC-RC composite pier,and HSRBECC-RC composite pier have been established.Moreover,using the nonlinear time-path dynamic analysis method,the influence of chloride ion erosion on the time-dependent seismic vulnerability(SV)of these different piers in different service life and different peak ground acceleration(PGA)were analyzed from a dynamic point of view.The research shows that the exceeding probability(EP)of the same damage level increases with the enhancement of service time and PGA and with the increase of destruction,the exceeding probability(EP)of slight damage(DL-1),moderate damage(DL-2),serious damage(DL-3),and complete collapse(DL-4)decreases in turn;the corrosion degree of chloride ion to piers is small during the early service period,the time-varying vulnerability curve of the bridge piers is almost the same as that of a new bridge,and during later service,as the extent of chloride ion corrosion deepens,exceeding probability(EP)under severe damage(DL-3)and complete collapse(DL-4)is increased,and the seismic performance is significantly enhanced.展开更多
An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers;...An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.展开更多
Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pi...Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.展开更多
Wood treated with chromated copper arsenate (CCA) is a common material for pier pilings. Research on CCA impacts in estuarine systems indicates that the magnitude of the biological effect is variable and dependent o...Wood treated with chromated copper arsenate (CCA) is a common material for pier pilings. Research on CCA impacts in estuarine systems indicates that the magnitude of the biological effect is variable and dependent on sediment and water characteristics. To assist environmental agencies in assessing pier impacts a project was conducted in the U.S.A. to investigate the spatial distribution and magnitude of As, Cr, and Cu accumulation in waters and soils near old and new piers. For new piers, soluble metal levels were highest within 2.9 m of the piers. Total As and Cu levels approached background levels at distances of 2.9 m and 1.4 m, respectively. For old piers, total As and Cu approached background levels at a distance of 9.0 m. Total Cr never exceeded background levels. Threshold effects concentrations were exceeded by sedimented As and Cu within 3.6 m of old piers and 2.1 m of new piers. Apparent effects thresholds were never reached. The only water chemistry variable impacted by piers was As with new piers. It was concluded that leachates accumulate only close to piers and at levels below critical biological thresholds, and would be expected to have negligible ecological effects in reasonably flushed areas.展开更多
Local scour is the reduction of original bed level around any hydraulic structure.Bridge failure due to scouring has made researchers study the cause of scouring and predict the scour depth and pattern around bridge p...Local scour is the reduction of original bed level around any hydraulic structure.Bridge failure due to scouring has made researchers study the cause of scouring and predict the scour depth and pattern around bridge piers and foundations.Several investigators have extensively studied local scour around isolated bridge pier,but modern designs of the bridges comprise of wide span and thus group of piers rather than a single pier.The flow and scour pattern around group of piers are different from the case of a single pier due to the interaction effect.The objective of present study is to investigate the effect of mutual interference of bridge piers on local scour experimentally around two piers in non-cohesive bed.Experiments were carried out on model bridge piers of circular cross section in a meandering channel.It was observed that when front and rear piers were placed at an angular displacement ofθ=40°and 80°respectively,maximum depth of scour is maximum.Hereθis the angle the line drawn at the inlet of bend to the line joining the centre of curvature and any point on the outer portion of the bend.展开更多
Spur dykes are the structures which are used to protect the eroding bank of rivers.They are sometimes also used to safeguard the life of many structures such as bridge piers,abutments etc.The efficiency of spur ...Spur dykes are the structures which are used to protect the eroding bank of rivers.They are sometimes also used to safeguard the life of many structures such as bridge piers,abutments etc.The efficiency of spur dykes has been checked in straight channels by conducting model tests in laboratories by many investigators.Very few studies were done in curved channels.In present work an attempt has been made to study the effect of location of spur dyke on bed and scour around bridge pier in curved open channel(bend angle=80o)with time.Experiment has been carried out in 80o channel bend at constant discharge(3.5×10^(-3) m^(3)/s)and bridge pier is located at angular displacementϴ=60o.Hereϴis the angle the line drawn at the inlet of any bend to the line joining the centre of curvature and any point on the outer portion of the bend.It is found that maximum scouring occurs atϴ=0o and 20oalong inner wall and atϴ=60o and 80o along outer wall.It is also found that scouring around bridge pier is more in the vicinity of pier and decreases with increase in distance from pier.The most suitable location for spur dyke to protect bridge pier is at angular displacementϴ=20o.Scour developed rapidly during initial time and then rate of scouring decreases with elapse of time.展开更多
Local scour around a bridge pier is an important parameter for the design of a bridge. Compared with the local scour in a mono-directional current, the local scour in a tidal current has its unique characteristics. In...Local scour around a bridge pier is an important parameter for the design of a bridge. Compared with the local scour in a mono-directional current, the local scour in a tidal current has its unique characteristics. In this paper, several aspects of local scour around bridge piers in tidal current, including the scour development process, the plane form of a scour hole and the maximum scour depth, are studied through movable bed flume experiments.展开更多
Seismic capacity,including the ultimate load-carrying capacity and ultimate deformation capacity of precast segmental concrete double-column(PSCDC)piers with steel sleeve(SS)connection or grouted corrugated-metal duct...Seismic capacity,including the ultimate load-carrying capacity and ultimate deformation capacity of precast segmental concrete double-column(PSCDC)piers with steel sleeve(SS)connection or grouted corrugated-metal duct(GCMD)connection,has been verified to be similar to those of cast-in-place(CIP)piers by quasi-static tests.However,the lack of knowledge of seismic response characteristics and damage process of PSCDC piers has limited their application in high-intensity seismic areas.Therefore,shake table tests,using variable types and intensities of seismic ground motions,were performed to investigate the seismic behavior of connection joints and to evaluate the seismic performance of PSCDC piers with SS and GCMD connections.Also,a finite element analysis(FEA)model was developed to study the influence of design parameters on the seismic behavior of the piers.The results showed that the main damage in PSCDC piers was caused by the cyclic opening and closing of connection joints.Under high-intensity ground motions,the PSCDC piers had a lower seismic performance than the CIP piers due to a significant decrease of their integrity and stiffness.The seismic performance of PSCDC piers is comparable to CIP piers when using an appropriate initial stress of the prestressing tendons.展开更多
In order to predict the local scour hole and its evaluation around a cylindrical bridge pier, the computational fluid dynamics (CFD) and theories of sediment movement and transport were employed to carry out numeric...In order to predict the local scour hole and its evaluation around a cylindrical bridge pier, the computational fluid dynamics (CFD) and theories of sediment movement and transport were employed to carry out numerical simulations. In the numerical method, the time-averaged Reynolds Navier-Stokes equations and the standard k-e model were first used to simulate the three-dimensional flow field around a bridge pier fixed on river bed. The transient shear stress on river bed was treated as a crucial hydrodynamic mechanism when handling sediment incipience and transport. Then, river-bed volumetric sediment transport was calculated, followed by the modification of the river bed altitude and configuration. Boundary adaptive mesh technique was employed to modify the grid system with changed river-bed boundary. The evolution of local scour around a cylindrical bridge pier was presented. The numerical results represent the flow pattern and mechanism during the pier scouring, with a good prediction of the maximum scour hole depth compared with test results.展开更多
In this work, experimental investigations have been pursued to analyse the influence of downward seepage on the turbulent characteristics of flow and corresponding changes in vortex structure around circular bridge pi...In this work, experimental investigations have been pursued to analyse the influence of downward seepage on the turbulent characteristics of flow and corresponding changes in vortex structure around circular bridge pier in alluvial channel. Experiments were conducted in sand bed channel with circular piers of different sizes for no seepage, 10% seepage and 20% seepage cases. The measurement of turbulent flow statistics such as velocity and Reynolds stresses is found to be negative within the scour hole at upstream of the pier whereas application of downward seepage retards the reversal of the flow causing a decrement in the velocity and Reynolds stresses. Higher Reynolds shear stress prevails at the downstream side because of the production of wake vortices. Contribution of all bursting events to the total Reynolds shear stress production has been observed to increase with downward seepage. The analysis of integral scale suggest that size of eddies increases with seepage, which is responsible for increase in particle mobility. Initially rate of scouring is more which abatements gradually with expanding time as well as with the increased of downward seepage. Presence of downward seepage reduces the depth and length of vortex and shifts towards downstream side of the pier.展开更多
By utilizing the current finite element program ANSYS, two types of finite element models (FEM), the beam model (BM) and shell model (SM), are established for the nonlinear stability analysis of a practical rigid fram...By utilizing the current finite element program ANSYS, two types of finite element models (FEM), the beam model (BM) and shell model (SM), are established for the nonlinear stability analysis of a practical rigid frame bridge—Longtanhe Great Bridge. In these analyses, geometrical and material nonlinearities are simultaneously taken into account. For geometrical nonlinearity, updated Lagrangian formulations are adopted to derive the tangent stiffness matrix. In order to simulate the nonlinear behavior of the plastic hinge of the piers, the multi lines spring element COMBIN39 is used in the SM while the bilinear rotational spring element COMBIN40 is employed in the BM. Numerical calculations show that satisfying results can be obtained in the stability analysis of the bridge when the double coupling nonlinearity effects are considered. In addition, the conclusion is significant for practical engineering.展开更多
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
文摘The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation.
基金The Natural Science Foundation of Jiangsu Province(NoBK2002061)
文摘A novel seismic design method, namely split-pier seismic design, is proposed. A vertical gap and connect elements are set in split-piers. The lateral stiffness of piers is reduced by cracking of the connect elements under severe earthquake, and the seismic response of bridges is reduced by avoiding the site predominant periods. A model of tied-arch rigid frame bridge with split-piers was designed. Seismic performance was investigated by pseudo-static experimentation on the scale model, The failure process of split-piers, the hysteresis characteristic and the effect of split-piers on the superstructure are presented. Results show that the split-pier has better seismic performance than common ductile piers do.
基金The National Natural Science Foundation of China(No.5117810151378112)the Doctoral Fund of Ministry of Education(No.20110092110011)
文摘To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.
基金National Natural Science Foundation of China under Grant No.51678150Science for Earthquake Resilience under Grant No.XH17064Australian Research Council Discovery Early Career Researcher Award(DECRA)
文摘In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.
基金Supported by:National Natural Science Foundation of China Under Grant No.50878033 and National Special Foundation of Earthquake Science of China Under Grant No.200808021
文摘In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.
基金National Natural Science Foundation of China Under Grant No.51008041 and 50978042the National Special Foundation of Earthquake Science of China Under Grant No.200808021the Fundamental Research Funds for the Central Universities Under Grant No.2011JC011
文摘An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.
文摘Experimental investigations have been carried out to study morpho-hydraulic characteristics such as scour geometry and turbulent flow properties around tandem piers in alluvial channels. Experiments were carried out in a plane sand bed with two circular piers of same diameter arranged in tandem manner under no seepage, 10% seepage and 20% seepage conditions. Downward seepage minimizes the scour depth around piers and restrains the development of scour depth with time. Strong reversal flow is found near the bed at upstream of piers and near free surface at downstream of piers where velocity and Reynolds shear stress are found to be negative which reduce in magnitude with downward seepage. The flow is more critical within the gap between two piers where velocity is lesser near free surface and gradually increasing towards bed. Quadrant analysis shows that contribution of each event to the total Reynolds shear stress increases with downward seepage. Sedimentation effect prevails within the scour hole whereas outside the scour hole erosive forces become more dominant. Reduced reversal flow at upstream of pier because of downward seepage results in decreasing higher order moments and turbulent kinetic energy. At downstream of piers, secondary currents are dominant due to wake vortices. Strouhal number decreases in case of seepage runs than no seepage condition.
基金National Natural Science Foundation of China under Grant No.51608488China Postdoctoral Science Foundation under Grant No.2020M672277Scientific and Technological Project of Henan province,China under Grant No.192102210185。
文摘As the main seismic component of a bridge,seismic damage to the bridge pier has a greater effect on its subsequent service.In the offshore chloride environment,the issues(e.g.,reinforcement bar corrosion and attenuation of concrete strength)of piers caused by chloride ion seriously curtail the normal service life and deteriorate the anti-seismic property of bridge structures.The engineered cementitious composite(ECC)-reinforced concrete(RC)composite pier with high strength reinforcement bars(HSRB)is expected to solve the above problems.This study aims to clarify the time-varying seismic vulnerability(SV)of the HSRBECC-RC composite pier during its full life cycle(FLC).Based on OpenSees,the refined finite element analysis models of RC pier,ECC-RC composite pier,and HSRBECC-RC composite pier have been established.Moreover,using the nonlinear time-path dynamic analysis method,the influence of chloride ion erosion on the time-dependent seismic vulnerability(SV)of these different piers in different service life and different peak ground acceleration(PGA)were analyzed from a dynamic point of view.The research shows that the exceeding probability(EP)of the same damage level increases with the enhancement of service time and PGA and with the increase of destruction,the exceeding probability(EP)of slight damage(DL-1),moderate damage(DL-2),serious damage(DL-3),and complete collapse(DL-4)decreases in turn;the corrosion degree of chloride ion to piers is small during the early service period,the time-varying vulnerability curve of the bridge piers is almost the same as that of a new bridge,and during later service,as the extent of chloride ion corrosion deepens,exceeding probability(EP)under severe damage(DL-3)and complete collapse(DL-4)is increased,and the seismic performance is significantly enhanced.
基金The National Natural Science Foundation of China(No.51678141,51378112)the Open Fund from the National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation,Southwest Jiaotong University(No.SWJTUGGS-2014001)
文摘An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.
基金National Natural Science Foundation of China under Grant Nos.51978656 and 51478459the Key Research and Development Project of Xuzhou under Grant No.KC22282the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering,China University of Mining and Technology under Grant No.KFJJ202004。
文摘Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.
文摘Wood treated with chromated copper arsenate (CCA) is a common material for pier pilings. Research on CCA impacts in estuarine systems indicates that the magnitude of the biological effect is variable and dependent on sediment and water characteristics. To assist environmental agencies in assessing pier impacts a project was conducted in the U.S.A. to investigate the spatial distribution and magnitude of As, Cr, and Cu accumulation in waters and soils near old and new piers. For new piers, soluble metal levels were highest within 2.9 m of the piers. Total As and Cu levels approached background levels at distances of 2.9 m and 1.4 m, respectively. For old piers, total As and Cu approached background levels at a distance of 9.0 m. Total Cr never exceeded background levels. Threshold effects concentrations were exceeded by sedimented As and Cu within 3.6 m of old piers and 2.1 m of new piers. Apparent effects thresholds were never reached. The only water chemistry variable impacted by piers was As with new piers. It was concluded that leachates accumulate only close to piers and at levels below critical biological thresholds, and would be expected to have negligible ecological effects in reasonably flushed areas.
文摘Local scour is the reduction of original bed level around any hydraulic structure.Bridge failure due to scouring has made researchers study the cause of scouring and predict the scour depth and pattern around bridge piers and foundations.Several investigators have extensively studied local scour around isolated bridge pier,but modern designs of the bridges comprise of wide span and thus group of piers rather than a single pier.The flow and scour pattern around group of piers are different from the case of a single pier due to the interaction effect.The objective of present study is to investigate the effect of mutual interference of bridge piers on local scour experimentally around two piers in non-cohesive bed.Experiments were carried out on model bridge piers of circular cross section in a meandering channel.It was observed that when front and rear piers were placed at an angular displacement ofθ=40°and 80°respectively,maximum depth of scour is maximum.Hereθis the angle the line drawn at the inlet of bend to the line joining the centre of curvature and any point on the outer portion of the bend.
文摘Spur dykes are the structures which are used to protect the eroding bank of rivers.They are sometimes also used to safeguard the life of many structures such as bridge piers,abutments etc.The efficiency of spur dykes has been checked in straight channels by conducting model tests in laboratories by many investigators.Very few studies were done in curved channels.In present work an attempt has been made to study the effect of location of spur dyke on bed and scour around bridge pier in curved open channel(bend angle=80o)with time.Experiment has been carried out in 80o channel bend at constant discharge(3.5×10^(-3) m^(3)/s)and bridge pier is located at angular displacementϴ=60o.Hereϴis the angle the line drawn at the inlet of any bend to the line joining the centre of curvature and any point on the outer portion of the bend.It is found that maximum scouring occurs atϴ=0o and 20oalong inner wall and atϴ=60o and 80o along outer wall.It is also found that scouring around bridge pier is more in the vicinity of pier and decreases with increase in distance from pier.The most suitable location for spur dyke to protect bridge pier is at angular displacementϴ=20o.Scour developed rapidly during initial time and then rate of scouring decreases with elapse of time.
文摘Local scour around a bridge pier is an important parameter for the design of a bridge. Compared with the local scour in a mono-directional current, the local scour in a tidal current has its unique characteristics. In this paper, several aspects of local scour around bridge piers in tidal current, including the scour development process, the plane form of a scour hole and the maximum scour depth, are studied through movable bed flume experiments.
基金Supported by Natural Science Foundation of China(NSFC)under Grant No.51408360Technology Project of Xiamen Construction Bureau(XJK)under Grant No.XJK2017-1-4。
文摘Seismic capacity,including the ultimate load-carrying capacity and ultimate deformation capacity of precast segmental concrete double-column(PSCDC)piers with steel sleeve(SS)connection or grouted corrugated-metal duct(GCMD)connection,has been verified to be similar to those of cast-in-place(CIP)piers by quasi-static tests.However,the lack of knowledge of seismic response characteristics and damage process of PSCDC piers has limited their application in high-intensity seismic areas.Therefore,shake table tests,using variable types and intensities of seismic ground motions,were performed to investigate the seismic behavior of connection joints and to evaluate the seismic performance of PSCDC piers with SS and GCMD connections.Also,a finite element analysis(FEA)model was developed to study the influence of design parameters on the seismic behavior of the piers.The results showed that the main damage in PSCDC piers was caused by the cyclic opening and closing of connection joints.Under high-intensity ground motions,the PSCDC piers had a lower seismic performance than the CIP piers due to a significant decrease of their integrity and stiffness.The seismic performance of PSCDC piers is comparable to CIP piers when using an appropriate initial stress of the prestressing tendons.
基金Project(50978095) supported by the National Natural Science Foundation of ChinaProject(IRT0917) supported by the Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject supported by China Scholarship Council
文摘In order to predict the local scour hole and its evaluation around a cylindrical bridge pier, the computational fluid dynamics (CFD) and theories of sediment movement and transport were employed to carry out numerical simulations. In the numerical method, the time-averaged Reynolds Navier-Stokes equations and the standard k-e model were first used to simulate the three-dimensional flow field around a bridge pier fixed on river bed. The transient shear stress on river bed was treated as a crucial hydrodynamic mechanism when handling sediment incipience and transport. Then, river-bed volumetric sediment transport was calculated, followed by the modification of the river bed altitude and configuration. Boundary adaptive mesh technique was employed to modify the grid system with changed river-bed boundary. The evolution of local scour around a cylindrical bridge pier was presented. The numerical results represent the flow pattern and mechanism during the pier scouring, with a good prediction of the maximum scour hole depth compared with test results.
文摘In this work, experimental investigations have been pursued to analyse the influence of downward seepage on the turbulent characteristics of flow and corresponding changes in vortex structure around circular bridge pier in alluvial channel. Experiments were conducted in sand bed channel with circular piers of different sizes for no seepage, 10% seepage and 20% seepage cases. The measurement of turbulent flow statistics such as velocity and Reynolds stresses is found to be negative within the scour hole at upstream of the pier whereas application of downward seepage retards the reversal of the flow causing a decrement in the velocity and Reynolds stresses. Higher Reynolds shear stress prevails at the downstream side because of the production of wake vortices. Contribution of all bursting events to the total Reynolds shear stress production has been observed to increase with downward seepage. The analysis of integral scale suggest that size of eddies increases with seepage, which is responsible for increase in particle mobility. Initially rate of scouring is more which abatements gradually with expanding time as well as with the increased of downward seepage. Presence of downward seepage reduces the depth and length of vortex and shifts towards downstream side of the pier.
文摘By utilizing the current finite element program ANSYS, two types of finite element models (FEM), the beam model (BM) and shell model (SM), are established for the nonlinear stability analysis of a practical rigid frame bridge—Longtanhe Great Bridge. In these analyses, geometrical and material nonlinearities are simultaneously taken into account. For geometrical nonlinearity, updated Lagrangian formulations are adopted to derive the tangent stiffness matrix. In order to simulate the nonlinear behavior of the plastic hinge of the piers, the multi lines spring element COMBIN39 is used in the SM while the bilinear rotational spring element COMBIN40 is employed in the BM. Numerical calculations show that satisfying results can be obtained in the stability analysis of the bridge when the double coupling nonlinearity effects are considered. In addition, the conclusion is significant for practical engineering.