期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Composition dependence of phase structure and electrical properties of(1-y)Bi_(1-x)Nd_xFeO_(3-y)BiScO_3 ceramics
1
作者 TAO Hong WU JiaGang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1029-1035,共7页
In this work, we have studied a new lead-free ceramic of(1-y)Bi1-xNdxFeO3-yBiScO3(0.05≤x≤0.15 and 0.05≤y≤0.15) prepared by a conventional solid-state method, and the influences of Nd and Sc content on their ph... In this work, we have studied a new lead-free ceramic of(1-y)Bi1-xNdxFeO3-yBiScO3(0.05≤x≤0.15 and 0.05≤y≤0.15) prepared by a conventional solid-state method, and the influences of Nd and Sc content on their phase structure and electrical properties were investigated in detail. The ceramics with 0.05≤x≤0.10 and 0.05≤y≤0.15 belong to an R3 c phase, and the rhombohedral-like and orthorhombic multiphase coexistence is established in the composition range of 0.125≤x≤0.15 and y=0. The electrical properties of the ceramics can be enhanced by modifying x and y values. The highest piezoelectric coefficient(d33~51 p C/N) is obtained in the ceramics with x=0.075 and y=0.125, which is superior to that of a pure BiFeO3 ceramic. In addition, a lowest dielectric loss(tan δ~0.095%, f=100 k Hz) is shown in the ceramics with x=0.15 and y=0 due to the involvement of low defect concentrations, and the improved thermal stability of piezoelectricity at 20–600℃ is possessed in the ceramics. We believe that the ceramics can play a meaningful role in the high-temperature lead-free piezoelectric applications. 展开更多
关键词 BiFeO_3 ceramics composition design phase structure piezoelectric properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部