A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of ...A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.展开更多
This paper aims at modeling and developing vibration control methods for a flexible piezoelectric beam. A collocated sensor/actuator placement is used. Finite element analysis (FEA) method is adopted to derive the d...This paper aims at modeling and developing vibration control methods for a flexible piezoelectric beam. A collocated sensor/actuator placement is used. Finite element analysis (FEA) method is adopted to derive the dynamics model of the system. A back propagation neural network (BPNN) based proportional-derivative (PD) algorithm is applied to suppress the vibration. Simulation and experiments are conducted using the FEA model and BPNN-PD control law. Experimental results show good agreement with the simulation results using finite element modeling and the neural network control algorithm.展开更多
基金Supported by the National Natural Science Foundation of China (No. 90716027, 51175319), and Shanghai Talent Development Fund (No.2009020).
文摘A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.
基金Project supported by the Key Project(No.60934001)the General Projects(Nos.51175181and90505014)of the National Natural Science Foundation of Chinaby the Fundamental Research Funds for the Central Universities,SCUT(No.2012ZZ0060)
文摘This paper aims at modeling and developing vibration control methods for a flexible piezoelectric beam. A collocated sensor/actuator placement is used. Finite element analysis (FEA) method is adopted to derive the dynamics model of the system. A back propagation neural network (BPNN) based proportional-derivative (PD) algorithm is applied to suppress the vibration. Simulation and experiments are conducted using the FEA model and BPNN-PD control law. Experimental results show good agreement with the simulation results using finite element modeling and the neural network control algorithm.