A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body forc...A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell.展开更多
Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer ma...Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.展开更多
基金The project supported by the National Natural Science Foundation of China (19572027)
文摘A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell.
基金Funded by the Natural Science Foundation of Anhui Province (No. 070414190)
文摘Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.