This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersio...This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.展开更多
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt...In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10672108 and 10632020)the key project of the Ministry of Education of China(No.206014).
文摘This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.
基金supported by the National Natural Science Foundation of China (Nos.10572043 and 10872057)the Research Fund for the Doctoral Program of Higher Education of China (No.20092302110006)the Natural Science Foundation of Hei Long Jiang Province (No.A2007-05)
文摘In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.