期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Fully sprayed MXene-based high-performance flexible piezoresistive sensor for image recognition
1
作者 Zhi-Dong Zhang Xue-Feng Zhao +4 位作者 Qing-Chao Zhang Jie Liang Hui-Nan Zhang Tian-Sheng Zhang Chen-Yang Xue 《Nano Materials Science》 EI CAS CSCD 2024年第1期77-85,共9页
High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring,soft robotics,medical treatment,and human-computer interface.However,these flexible pres... High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring,soft robotics,medical treatment,and human-computer interface.However,these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are timeconsuming.Herein,a highly sensitive,flexible piezoresistive tactile sensor is designed and fabricated,consisting of three main parts:the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate,multilayer Ti_(3)C_(2)-MXene film as an intermediate conductive filler,and the few-layer Ti_(3)C_(2)-MXene nanosheetbased interdigital electrodes as the bottom substrate.The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range(less than 10 kPa for 175 kPa^(-1))and possesses an out-standing permanence of up to 5000 cycles.Moreover,a 16-pixel sensor array is designed,and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated.This fully sprayed MXene-based pressure sensor,with high sensitivity and excellent durability,can be widely used in,electronic skin,intelligent robots,and many other emerging technologies. 展开更多
关键词 piezoresistive sensor Ti_(3)C_(2)-MXene T-ZnOw/PDMS film Randomly distributed microstructure
下载PDF
Recent progress in graphene-based wearable piezoresistive sensors:From 1D to 3D device geometries 被引量:1
2
作者 Kai-Yue Chen Yun-Ting Xu +3 位作者 Yang Zhao Jun-Kai Li Xiao-Peng Wang Liang-Ti Qu 《Nano Materials Science》 EI CAS CSCD 2023年第3期247-264,共18页
Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high per... Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications. 展开更多
关键词 piezoresistive sensors GRAPHENE Electronic skin Flexible and wearable devices
下载PDF
Bioinspired flexible piezoresistive sensor for high-sensitivity detection of broad pressure range 被引量:4
3
作者 Meng Wang Hao Zhang +5 位作者 Han Wu Suqian Ma Lei Ren Yunhong Liang Chunbao Liu Zhiwu Han 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期243-254,共12页
The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement r... The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement range to provide human-like tactile sensation.Herein,we developed a flexible piezoresistive pressure sensor that is highly sensitive in a broad pressure range by using lotus leaf micropatterned polydimethylsiloxane and multilayer superposition.By superposing four layers of micropatterned constructive substrates,the multilayer piezoresistive pressure sensor achieves a broad pressure range of 312 kPa,a high sensitivity of 2.525 kPa^(−1),a low limit of detection(LOD)of<12 Pa,and a fast response time of 45 ms.Compared with the traditional flexible pressure sensor,the pressure range of this sensor can be increased by at least an order of magnitude.The flexible piezoresistive pressure sensor also shows high robustness:after testing for at least 1000 cycles,it shows no sign of fatigue.More importantly,these sensors can be potentially applied in various human motion detection scenarios,including tiny pulse monitoring,throat vibration detection,and large under-feet pressure sensing.The proposed fabrication strategy may guide the design of other kinds of multifunctional sensors to improve the detection performance. 展开更多
关键词 BIONIC piezoresistive pressure sensor Microstructure MULTILAYER Wide pressure range
下载PDF
Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures 被引量:13
4
作者 Chenying Zhang Wei Zhou +6 位作者 Da Geng Cheng Bai Weida Li Songyue Chen Tao Luo Lifeng Qin Yu Xie 《Opto-Electronic Advances》 SCIE 2021年第4期16-26,共11页
Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors,which are inadequate in the most used molding method.Herein,laser direct writing(LDW)met... Functional materials with high viscosity and solid materials have received more and more attentions in flexible pressure sensors,which are inadequate in the most used molding method.Herein,laser direct writing(LDW)method is proposed to fabricate flexible piezoresistive sensors with microstructures on PDMS/MWCNTs composites with an 8%MWCNTs mass fraction.By controlling laser energy,microstructures with different geometries can be obtained,which significantly impacts the performances of the sensors.Subsequently,curved microcones with excellent performance are fabricated under parameters of f=40 kHz and v=150 mm·s^(-1).The sensor exhibits continuous multi-linear sensitivity,ultrahigh original sensitivity of 21.80%kPa^(-1),wide detection range of over 20 kPa,response/recovery time of~100 ms and good cycle stability for more than 1000 times.Besides,obvious resistance variation can be observed when tiny pressure(a peanut of 30 Pa)is applied.Finally,the flexible piezoresistive sensor can be applied for LED brightness controlling,pulse detection and voice recognition. 展开更多
关键词 flexible pressure sensor piezoresistive sensor MICROSTRUCTURE laser processing
下载PDF
Flexible piezoresistive pressure sensor based on a graphene-carbon nanotube-polydimethylsiloxane composite
5
作者 Huifen Wei Xiangmeng Li +2 位作者 Fangping Yao Xinyu Feng Xijing Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期35-44,共10页
Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here ... Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics. 展开更多
关键词 piezoresistive sensor Flexible sensor GRAPHENE Carbon nanotube Polymer composite Microstructure
下载PDF
A multiple flame-retardant,early fire-warning,and highly sensitive thread-shaped all-fabric-based piezoresistive sensor
6
作者 LI WeiBiao ZHANG Shuai +5 位作者 MA ShuQi WANG JiaCheng WANG Huan YANG QiRong SONG YongTao ZHU Jie 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1151-1159,共9页
In the artificial intelligence age,multifunctional and intelligent fireproof fabric-based electronics are urgently needed.Herein,a novel thread-shaped all-fabric-based piezoresistive sensor(denoted as TAFPS)with prope... In the artificial intelligence age,multifunctional and intelligent fireproof fabric-based electronics are urgently needed.Herein,a novel thread-shaped all-fabric-based piezoresistive sensor(denoted as TAFPS)with properties such as flame retardancy,firewarning,and piezoresistivity is proposed,which is composed of an inner nickel-plated fabric electrode,a multifunctional double helix fabric,and an external flame-retardant encapsulation fabric.Owing to the multiple flame-retardant properties of glass fiber tubular fabric,aminated carbon nanotubes(ACNTs),and ammonium polyphosphate,the char residue of the TAFPS reaches40.3 wt%at 800℃.In addition,the heat-sensitive effect of ACNTs during combustion causes a rapid decrease in the TAFPS resistance,triggering the fire alarm system within 2 s.Additionally,benefiting from the force-sensitive behavior of the double helix layer and tightly wrapped pattern of the external heat-shrinkable tubular fabric,TAFPS demonstrated a high sensitivity of4.40 kPa^(-1)(0–5.81 k Pa)and good stability for 10000 s.Considering its excellent flame resistance,high sensitivity,and agreeable stability,the developed TAFPS can be integrated into fire suits to monitor the exercise training process and the external fire environment.This work offers a novel approach for fabricating all-fabric-based piezoresistive sensors in the future for fire prevention and fire alarms,with promising applications in fire protection,the Internet of Things,and smart apparel. 展开更多
关键词 all-fabric piezoresistive sensor multiple flame retardancy agile fire-warning high sensitivity
原文传递
Optimization of microstructure design for enhanced sensing performance in flexible piezoresistive sensors
7
作者 Xinghao Fan Hailong Hu +2 位作者 Bin Liao Yaqi Zhang Fan Zhang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期711-728,共18页
Flexible piezoresistive strain sensors have received significant attention due to their diverse applications in monitoring human activities and health,as well as in robotics,prosthetics,and human–computer interaction... Flexible piezoresistive strain sensors have received significant attention due to their diverse applications in monitoring human activities and health,as well as in robotics,prosthetics,and human–computer interaction interfaces.Among the various flexible sensor types,those with microstructure designs are considered promising for strain sensing due to their simple structure,high sensitivity,extensive operational range,rapid response time,and robust stability.This review provides a concise overview of recent advancements in flexible piezoresistive sensors based on microstructure design for enhanced strain sensing performance,including the impact of microstructure on sensing mechanisms,classification of microstructure designs,fabrication methods,and practical applications.Initially,this review delves into the analysis of piezoresistive sensor sensing mechanisms and performance parameters,exploring the relationship between microstructure design and performance enhancement.Subsequently,an in-depth discussion is presented,focusing on the primary themes of microstructure design classification,process selection,performance characteristics,and specific applications.This review employs mathematical modeling and hierarchical analysis to emphasize the directionality of different microstructures on performance enhancement and to highlight the performance advantages and applicable features of various microstructure types.In conclusion,this review examines the multifunctionality of flexible piezoresistive sensors based on microstructure design and addresses the challenges that still need to be overcome and improved,such as achieving a wide range of stretchability,high sensitivity,and robust stability.This review summarizes the research directions for enhancing sensing performance through microstructure design,aiming to assist in the advancement of flexible piezoresistive sensors. 展开更多
关键词 microstructure design sensing performance flexible piezoresistive strain sensors microsensing mechanism
原文传递
Interlayer engineering in 3D graphene skeleton realizing tunable electronic properties at a highly controllable level for piezoresistive sensors
8
作者 Xunxiang Hu Lingling Tan +1 位作者 Xianzhang Wu Jinqing Wang 《Nano Research》 SCIE EI CSCD 2023年第7期8512-8521,共10页
Three-dimensional(3D)graphene is a promising active component for various engineering fields,but its performance is limited by the hidebound electrical conductivity levels and hindered electrical transport.Here we pre... Three-dimensional(3D)graphene is a promising active component for various engineering fields,but its performance is limited by the hidebound electrical conductivity levels and hindered electrical transport.Here we present a novel approach based on interlayer engineering,in which graphene oxide(GO)nanosheets are covalently functionalized with varied molecular lengths of diamine molecules.This has led to the creation of an unprecedented class of 3D graphene with highly adjustable electronic properties.Theoretical calculations and experimental results demonstrate that ethylenediamine,with its small diameter acting as a molecular bridge for facilitating electron transport,has the potential to significantly improve the electrical conductivity of 3D graphene.In contrast,butylene diamine,with its larger diameter,has a reverse effect due to the enlarged spacing of the graphene interlayers,resulting in conductive degradation.More importantly,the moderate conductive level of 3D graphene can be achieved by combining the interlayer spacing expansion effect and theπ-electronic donor ability of aromatic amines.The resulting 3D graphene exhibits highly tunable electronic properties,which can be easily adjusted in a wide range of 2.56-6.61 S·cm^(-1)compared to pristine GO foam(4.20 S·cm^(-1)).This opens up new possibilities for its use as an active material in a piezoresistive sensor,as it offers remarkable monitoring abilities. 展开更多
关键词 GRAPHENE tunable electronic properties multifunctional composites piezoresistive sensor
原文传递
Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets 被引量:3
9
作者 Sajad Abolpour Moshizi Shohreh Azadi +4 位作者 Andrew Belford Amir Razmjou Shuying Wu Zhao Jun Han Mohsen Asadnia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期26-43,共18页
This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized fo... This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications.The results demonstrated a high sensitivity(103.91 mV(mm/s)-1) and a very low-velocity detection threshold(1.127 mm s-1) in steady-state flow monitoring.As one of many potential applications,we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals(SCCs).As a proof of concept,magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal(LSCC).The sensor was embedded into the artificial LSCC and tested for various physiological movements.The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry,frequency,and amplitude.The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring,intravenous therapy(Ⅳ),water leakage monitoring,and unmanned underwater robots through incorporation of the appropriate packaging of devices. 展开更多
关键词 Vertical graphene nanosheets Artificial vestibular system Bioinspired sensors piezoresistive sensors
下载PDF
Vanadium metal-organic framework-derived multifunctional fibers for asymmetric supercapacitor,piezoresistive sensor,and electrochemical water splitting 被引量:3
10
作者 Jie Pu Yong Gao +4 位作者 Qinghe Cao Gangwen Fu Xing Chen Zhenghui Pan Cao Guan 《SmartMat》 2022年第4期608-618,共11页
Fiber-shaped integrated devices are highly desirable for wearable and portable smart electronics,owing to their merits of lightweight,high flexibility,and wearability.However,how to effectively employ multifunctional ... Fiber-shaped integrated devices are highly desirable for wearable and portable smart electronics,owing to their merits of lightweight,high flexibility,and wearability.However,how to effectively employ multifunctional fibers in one integrated device that can simultaneously achieve energy storage and utilization is a major challenge.Herein,a set of multifunctional fibers all derived from vanadium metal-organic framework nanowires grown on carbon nanotube fiber(V-MOF NWs@CNT fiber)is demonstrated,which can be used for various energy storage and utilization applications.First,a fiber-shaped asymmetric supercapacitor(FASC)is fabricated based on the CoNi-layered double hydroxide nanosheets@vanadium oxide NWs@CNT fiber(CoNi-LDH NSs@V2O5 NWs@CNT fiber)as the positive electrode and vanadium nitride(VN)NWs@CNT fiber as the negative electrode.Benefiting from the outstanding compatibility of the functional materials,the FASC with a maximum working voltage of 1.7 V delivers a high-stack volumetric energy density of 11.27 mW·h/cm3.Then,a fiber-shaped integrated device is assembled by twisting a fiber-shaped piezoresistive sensor(FPS;VN NWs@CNT fiber also served as the highly sensitive material)and a FASC together,where the highperformance FASC can provide a stable and continuous output power for the FPS.Finally,the S-VOx NWs@CNT fiber(sulfur-doped vanadium oxide)electrode shows promising electrocatalytic performance for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),which is further constructed into a self-driven water-splitting unit with the integration of the FASCs.The present work demonstrates that the V-MOF NWs@CNTderived fibers have great potential for constructing wearable multifunctional integrated devices. 展开更多
关键词 asymmetric supercapacitor electrochemical water splitting fiber-shape integrated devices MULTIFUNCTIONAL piezoresistive sensor V-MOF
原文传递
A button switch inspired duplex hydrogel sensor based on both triboelectric and piezoresistive effects for detecting dynamic and static pressure 被引量:1
11
作者 Zhensheng Chen Jiahao Yu +4 位作者 Xiaoxi Zhang Haozhe Zeng Yunjia Li Jin Wu Kai Tao 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第2期12-20,共9页
The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on t... The capability to sense complex pressure variations comprehensively is vital for wearable electronics and flexible human–machine interfaces.In this paper,inspired by button switches,a duplex tactile sensor based on the combination of triboelectric and piezoresistive effects is designed and fabricated.Because of its excellent mechanical strength and electrical stability,a double-networked ionic hydrogel is used as both the conductive electrode and elastic current regulator.In addition,micro-pyramidal patterned polydimethylsiloxane(PDMS)acts as both the friction layer and the encapsulation elastomer,thereby boosting the triboelectric output performance significantly.The duplex hydrogel sensor demonstrates comprehensive sensing ability in detecting the whole stimulation process including the dynamic and static pressures.The dynamic stress intensity(10–300 Pa),the action time,and the static variations(increase and decrease)of the pressure can be identified precisely from the dual-channel signals.Combined with a signal processing module,an intelligent visible door lamp is achieved for monitoring the entire“contact–hold–release–separation”state of the external stimulation,which shows great application potential for future smart robot e-skin and flexible electronics. 展开更多
关键词 Duplex hydrogel sensor Triboelectric nanogenerator piezoresistive sensor Dynamic and static sensing
下载PDF
An eco-friendly and highly sensitive loofah@CF/CNT 3D piezoresistive sensor for human activity monitoring and mechanical cotrol
12
作者 ZHU Jie SONG YongTao +3 位作者 XUE XiaoFei LIU ZhiLong MAO QingYuan JIA ZhenHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2667-2674,共8页
Three-dimensional(3D)porous piezoresistive sensors are widely used because of their simple fabrication and convenient signal acquisition.However,because of the dependence on organic skeleton materials and the complexi... Three-dimensional(3D)porous piezoresistive sensors are widely used because of their simple fabrication and convenient signal acquisition.However,because of the dependence on organic skeleton materials and the complexity of conductive coating preparation,the electrical and mechanical properties of 3D wearable piezoresistive sensors have gradually failed to accommodate many emerging fields.Here,a new flexible 3D piezoresistive sensor(NF3PS)with high sensitivity and a wide measurement range is proposed,which comprises a natural porous loofah as a flexible framework and carbon fiber/carbon nanotube(CF/CNT)multiscale composite as a conductive coating.Composed of cellulose and lignin,the irregular,porous loofah has excellent mechanical strength,elasticity,and toughness,ensuring a repeated compression/recovery behavior of the NF3PS.In addition,compared with the single-size carbon coating,the coupling of multiscale CF/CNT composite coating improves sensitivities over a range of pressures.The NF3PS demonstrates a sensitivity of 6.94 kPa^(-1) with good linearity in the pressure range of 0–11.2 kPa and maintains a sensitivity of 0.28 kPa^(-1) in an ultrawide measurement range of 11.2–84.6 kPa.Considering flexibility,robustness,and wide-ranging linear resistance variation,the feasibility of the NF3PS in human activity monitoring,mechanical control,and smart homes is verified.This work provides a novel strategy for a new generation of 3D flexible pressure sensors for improving sensitivity and measurement range and demonstrates attractive applications in wearable sensors. 展开更多
关键词 3D piezoresistive sensor loofah framework CF/CNT multiscale composite high sensitivity human activity monitoring mechanical control
原文传递
Carbonization fabrication of a piezoresistive sensor with improved sensitivity via Ni decoration of carbonized cotton fibers
13
作者 HE Xiang WANG FengMing +8 位作者 LIANG YiYing WU JiaWei LIANG JiongHong SHEN GengZhe LI BaiJun SU DaoJian ZHANG Chi SONG WeiDong HE Xin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第12期3000-3009,共10页
The development of wearable electronics urgently requires the cost-effective and scalable fabrication of high-performance pressure sensors.This work aims to develop a simple carbonization strategy to facilitate sensor... The development of wearable electronics urgently requires the cost-effective and scalable fabrication of high-performance pressure sensors.This work aims to develop a simple carbonization strategy to facilitate sensor sensitivity by decorating discrete nickel nanoparticles on carbonized cotton fibers(CCFs).The increased air gap between the fibers at the unloading state,as well as the enlargement of the deformation distance and the contact area between the conductive materials at the loading state,contribute to a more significant resistance change.Therefore,the sensitivity of the piezoresistive sensor is improved more than 5 times within 1 N by introducing Ni nanoparticles,and it is characterized by a rapid response(~160 ms)and recovery(~100 ms),wide detection range(~20 N/~130 kPa),and good durability(~4000 cycles).The flexible sensor has been successfully demonstrated to monitor human movements,physical stimuli,and pressure distribution.Furthermore,the proposed device can control temperature accurately as a uniform and large-scale heater.This work reveals that the Ni@CCFs-based sensor is prospective in wearable electronics,artificial intelligence,health monitoring,medical diagnosis and treatment. 展开更多
关键词 carbonized cotton fabric Ni nanoparticles flexible piezoresistive sensor wearable device
原文传递
Enhancing Accuracy of Flexible Piezoresistive Pressure Sensors by Suppressing Seebeck Effect
14
作者 SUI Jingliang DU Minzhi +4 位作者 JING Yuanyuan YANG Xiaona WAN Xuefen YANG Yi ZHANG Kun 《Journal of Donghua University(English Edition)》 CAS 2021年第6期498-503,共6页
Flexible piezoresistive pressure sensors can offer convenient detection of mechanical deformations for wearable electronics.Previous studies of flexible piezoresistive pressure sensors focus on the sensitivity but the... Flexible piezoresistive pressure sensors can offer convenient detection of mechanical deformations for wearable electronics.Previous studies of flexible piezoresistive pressure sensors focus on the sensitivity but the low-cost and self-powered sensors remain a challenge due to the deviation of resistance signal acquisition caused by thermoelectric voltage.Here,piezoresistive pressure sensors with ultralow Seebeck coefficient of-0.72μV/K based on carbon nanotubes(CNTs)/polyethyleneimine(PEI)/melamine(CPM)sponge are reported.Due to the diminished Seebeck effect,the CPM sponge pressure sensors successfully reduce the deviation to 18.75%and can keep stable sensitivity and resistance change under a very low working voltage and change temperature environment.The stable properties of the sensors make them successful to work for real-time sensing in self-powered wearable electronics. 展开更多
关键词 piezoresistive pressure sensor carbon nanotube(CNT) Seebeck effect deviation in resistance measurement thermoelectric voltage
下载PDF
Piezoresistive Characteristic of Conductive Rubber for Flexible Tactile Sensor
15
作者 黄英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期443-448,共6页
In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experime... In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experiments were undertaken and the resultant data were used for its piezoresistive characteristics investigation for two kinds of electrode connection configurations,the surface directive connection and embedded connection.It is found that due to the rather strong nonlinearity of the piezoresistive characteristic curves obtained,a higher correlation relationship can be obtained by means of quadratic polynomial fitting.It also showed that the embedded electrode assembling has higher fitting accuracy while the surface directive connection has better mechanical sensitivity. 展开更多
关键词 conductive rubber piezoresistive effects flexible tactile sensor
下载PDF
Piezoresistive design for electronic skin: from fundamental to emerging applications 被引量:7
16
作者 Fang Zhong Wei Hu +4 位作者 Peining Zhu Han Wang Chao Ma Nan Lin Zuyong Wang 《Opto-Electronic Advances》 SCIE EI 2022年第8期75-106,共32页
There is growing recognition that the developments in piezoresistive devices from personal healthcare to artificial intelli-gence,will emerge as de novo translational success in electronic skin.Here,we review the upda... There is growing recognition that the developments in piezoresistive devices from personal healthcare to artificial intelli-gence,will emerge as de novo translational success in electronic skin.Here,we review the updates with regard to piezoresistive sensors including basic fundamentals,design and fabrication,and device performance.We also discuss the prosperous advances in piezoresistive sensor application,which offer perspectives for future electronic skin. 展开更多
关键词 electronic skin piezoresistive sensor BIOCOMPATIBILITY
下载PDF
Arrayed piezoresistive and inertial measurement unit sensor-integrated assistant training tennis racket for multipoint hand pressure monitoring and representative action recognition 被引量:2
17
作者 YANG MingChuan HOU XiaoJuan +9 位作者 WU Hui GUO YangYanHao ZHANG Jie XIE Xin XIAN Shuai WANG Min ZHANG Le QIAN Shuo HE Jian CHOU XiuJian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第6期1746-1756,共11页
Technology-assisted ball training systems have become a research hotspot due to their ability to provide quantitative data for guiding athletes to address their areas of improvement.However,traditional tennis training... Technology-assisted ball training systems have become a research hotspot due to their ability to provide quantitative data for guiding athletes to address their areas of improvement.However,traditional tennis training systems still have some limitations;for instance,they are subjective,expensive,heavy,and time-consuming.In this research,an assistant training tennis racket,which consists of arrayed flexible sensors and an inertial measurement unit,has been proposed to comprehensively analyze the representative actions’force and acceleration.Consisting of MXene as the sensitive material and melamine sponge as the substrate(named MMSS),the flexible sensor exhibited an excellent sensitivity of 5.35 kPa^(-1)(1.1-22.2 kPa)due to the formation of a 3D conductive network.Moreover,the sensor retained a high sensitivity of 0.6 k Pa-1in an ultrawide measurement range(22.2-266 kPa).In addition to recognizing the type of hitting action,an artificial intelligence algorithm was introduced to accurately differentiate the five typical motion behaviors with an accuracy rate of 98.2%.This study not only proposes a comprehensive assistant training tennis racket for improving the techniques of tennis enthusiasts but also a new information processing scheme for intelligent sensing and distinction of different movements,which can offer significant application potential in sports big data collection and the Internet of things. 展开更多
关键词 IMU arrayed piezoresistive sensors multipoint monitoring action recognition intelligent sports
原文传递
A SMART COMPENSATION SYSTEM BASED ON MCA7707 PROCESSOR
18
作者 赵敏 姚敏 颜彦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期97-101,共5页
This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this s... This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this system. It can optimize the process of piezoresi stive sensor calibration and compensation, then, a total error factor within 0.2 % of the sensor′s repeatability errors is obtained. Data are recorded and coeff icients are determined automatically by this system, thus, the sensor compensati on is simplified greatly. For operating easily, a wizard compensation program is designed to correct every error and to get the optimum compensation. 展开更多
关键词 MCA7707 processor temp erature compensation piezoresistive sensor
下载PDF
Metal Organic Framework Derived Zirconia-Carbon Nanoporous Mat for Integrated Strain Sensor Powered by Solid‑State Supercapacitor 被引量:1
19
作者 Brindha Ramasubramanian Vundrala Sumedha Reddy +2 位作者 Ye Zhen Seeram Ramakrishna Vijila Chellappan 《Advanced Fiber Materials》 SCIE EI CAS 2023年第4期1404-1416,共13页
Flexible electronics are essential for the rapid development of human-machine interface technology,encompassing sensors and energy storage systems.Solid-state supercapacitors with 1D nanofiber electrodes are critical ... Flexible electronics are essential for the rapid development of human-machine interface technology,encompassing sensors and energy storage systems.Solid-state supercapacitors with 1D nanofiber electrodes are critical for enhancing ion transport.In this study,a flexible supercapacitor integrated with a strain sensor was designed using a polyvinyl alcohol/polymethyl methacrylate(PVA/PMMA)-based electrolyte and a metal-organic framework(MOF)-derived Zr-nanoporous carbon mat(Zr-NPC).The sensor showed remarkable sensitivity over a broad strain range,enabling reliable and precise detection of mechanical deformation.The supercapacitor with Zr-NPC@PVDF electrode also demonstrated a specific capacitance of 286 mF cm^(-2) at 0.5 mA cm^(-2),maintaining high flexibility and mechanical strength.The fabricated supercapacitor maintained around 81%charge retention after 10,000 cycles.Ultimately,the self-powered integrated model was directly connected to the human body to detect physical motion,accentuating its potential for widespread applications in wearable technology. 展开更多
关键词 SUPERCAPACITOR piezoresistive sensor POROSITY NANOCARBON
原文传递
Highly sensitive piezoresistive pressure sensors based on laser-induced graphene with molybdenum disulfide nanoparticles 被引量:7
20
作者 HAO DaPeng YANG RuoXi +1 位作者 YI Ning CHENG HuanYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第11期2408-2414,共7页
Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost ... Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost of active materials make low-cost,large-scale production elusive. In this work, we report a flexible piezoresistive pressure sensor assembled with two 3D laserinduced graphene(LIG) foam electrodes on a polyimide thin film from a simple laser scribing process in the ambient environment. The design of the air gap between the two foam electrodes allows the sensor to showcase a low limit of detection of 0.274 Pa, which provides favorable sensing performance in motion detection and wrist pulse monitoring. The addition of spherical MoS2 nanoparticles between the two foam electrodes further enhances the sensitivity to 88 k Pa-1 and increases the sensing range to significantly outperform the previous literature reports. The demonstrated LIG pressure sensors also exhibit fast response/recovery rates and excellent durability/repeatability. 展开更多
关键词 piezoresistive pressure sensor laser-induced graphene foam molybdenum disulfide nanoparticles health monitoring
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部