The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low va...The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.展开更多
[ Objective] The aim of this study was to develop a cheap and localized microbial agent so as to solve high cost of microbial agent for pig manure composting in Jiaxing City. [ Method] Pig manure in the experimental g...[ Objective] The aim of this study was to develop a cheap and localized microbial agent so as to solve high cost of microbial agent for pig manure composting in Jiaxing City. [ Method] Pig manure in the experimental group and control group was inoculated with the self-developed micro- bial agent and commercial microbial agent, respectively. The manure was decomposed for 38 d, during which the indicators of compost including physical properties, temperature, pH value, water content, organic matter, dissolved nitrogen, carbon nitrogen ratio and germination rate were studied. [ Result] The water content in the experimental group declined to 26.10% after 33 d of compost, meeting the standard upper limitation of 30% for maturity. By comparison, the water content in the control group was slightly higher than 30% even after 38 d. The germination rate of seeds fertilized with the experimental manure compost met the standard for maturity on Day 28, while that in the control group met the standard for maturity on Day 35. When the composting was finished, the ratio of total carbon to total nitrogen in the pig manure was 14.64 and 16.43 respective- ly in the experimental and control group, and the organic matter content was about 45% for both. All these indexes could meet the standards for or- ganic fertilizer products. [ Conclusion] The self-developed microbial agent can moot the requirements for pig manure composting, and it can shorten the composting time by 5 -8 d compared with the commercial agent. In addition, the fertilizer product composted by the self-developed microbial a qent has lower water content and thereby is much more beneficial for preservation.展开更多
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201004)Jilin Provincial Research Foundation for Basic Research, China (201105033)
文摘The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.
基金funded by the Science and Technology Project of Nanhu District,Jiaxing City,Zhejiang Province
文摘[ Objective] The aim of this study was to develop a cheap and localized microbial agent so as to solve high cost of microbial agent for pig manure composting in Jiaxing City. [ Method] Pig manure in the experimental group and control group was inoculated with the self-developed micro- bial agent and commercial microbial agent, respectively. The manure was decomposed for 38 d, during which the indicators of compost including physical properties, temperature, pH value, water content, organic matter, dissolved nitrogen, carbon nitrogen ratio and germination rate were studied. [ Result] The water content in the experimental group declined to 26.10% after 33 d of compost, meeting the standard upper limitation of 30% for maturity. By comparison, the water content in the control group was slightly higher than 30% even after 38 d. The germination rate of seeds fertilized with the experimental manure compost met the standard for maturity on Day 28, while that in the control group met the standard for maturity on Day 35. When the composting was finished, the ratio of total carbon to total nitrogen in the pig manure was 14.64 and 16.43 respective- ly in the experimental and control group, and the organic matter content was about 45% for both. All these indexes could meet the standards for or- ganic fertilizer products. [ Conclusion] The self-developed microbial agent can moot the requirements for pig manure composting, and it can shorten the composting time by 5 -8 d compared with the commercial agent. In addition, the fertilizer product composted by the self-developed microbial a qent has lower water content and thereby is much more beneficial for preservation.