In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test spe...In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.展开更多
The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0...The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0.37 were selected and the specimens were tested at the ages of 7 d and 28 d. The experimental results showed that there was a corresponding increase in first cracking strength, modulus of rupture, compressive strength and flexural strength with the decrease of w/b. Within the w/b range of 0.25-0.37, higher w/b was found to have improved effects on deflection, strain hardening index and toughness index of ECC. In the permission of meeting the requirement of compressive strength grade, selecting higher w/b in mix design will help to obtain robust ECC.展开更多
Diatoms are widely distributed in many temperate areas and some species frequently form extensive blooms in spring. Hence, monitoring the variations of specific genera or species of diatoms is necessary for studying p...Diatoms are widely distributed in many temperate areas and some species frequently form extensive blooms in spring. Hence, monitoring the variations of specific genera or species of diatoms is necessary for studying phytoplankton population dynamics in marine ecosystems. To test whether pigment ratios can be used to identify diatoms at a below-class taxonomic level, we analyzed 14 species/strains of diatoms isolated from Chinese seas using high performance liquid chromatography (HPLC). We normalized all pigment concentrations to total chlorophyll a to calculate the ratios of pigment to chlorophyll a, and calculated the ratios between accessory pigments (or pigment sums). Cluster analysis indicated that these diatoms could be classified into four clusters in terms of three accessory pigment ratios: chlorophyll c2: chlorophyll Cl, fucoxanthin:total chlorophyll c and diadinoxanthin:diatoxanthin. The classification results matched well with those of biological taxonomy. To test the stability of the classification, pigment data from one species, cultured under different light intensities, and five new species/strains were calculated and used for discriminant analysis. The results show that the classification of diatom species using pigment ratio suites was stable for the variations of pigment ratios of species cultured in different light intensities. The introduction of new species, however, may confuse the classification within the current scheme. Classification of marine diatoms using pigment ratio suites is potentially valuable for the fine chemotaxonomy of phytoplankton at taxonomic levels below class and would advance studies on phytoplankton population dynamics and marine ecology.展开更多
Pigment printing was carried out on lab scale by simple screen-printing techniques. By the application of acrylate and butadiene based binder, the crocking fastness, formaldehyde release and PVC migration of fabric pr...Pigment printing was carried out on lab scale by simple screen-printing techniques. By the application of acrylate and butadiene based binder, the crocking fastness, formaldehyde release and PVC migration of fabric printed with Imparon red KB pigment was evaluated. The effect of curing time on K/S values was also investigated. It has been found that butadiene based binder shows good performance in terms of crocking fastness, formaldehyde release and PVC migra-tion. It has also been observed that by increasing the binder concentration, the release of formaldehyde decreased and by increasing the curing time, the K/S values of printed fabric were decreased.展开更多
To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 4...To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.展开更多
The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when wat...The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.展开更多
Aiming at improving the permeability of the pigment dyed fabrics,two kinds of hydrophilic polymers(polyvinyl pyrrolidone(PVP),and polyethylene glycol(PEG)were fed into the styrene-butyl acrylate(St-BuA)copolymer latex...Aiming at improving the permeability of the pigment dyed fabrics,two kinds of hydrophilic polymers(polyvinyl pyrrolidone(PVP),and polyethylene glycol(PEG)were fed into the styrene-butyl acrylate(St-BuA)copolymer latex binder respectively to prepare films with macropores.The effects of the post-added polymers on the latex film formation process and film structures were studied and the performance of the dyed fabrics was evaluated.It was found that the drying process could still be divided into three stages even after the addition of PVP and PEG.And the water evaporation rate during the first and last stage remained the same as usual.However,after the addition of PVP,the onset of the second stage was delayed to high volume fraction,and PVP formed into spherical dispersion phase with 300 nm in diameter.It provided a great deal of interface between the latex polymer and the PVP phase,which led to an increase in the water evaporation rate during the second stage.A different case was found after the feeding of PEG.Firstly,the first stage ended at low volume fraction and a decreased evaporation rate was observed in the second stage.Secondly,the PEG dispersion appeared as finger-like structure in the transmission electron microscopy(TEM)images with 9μm in length.After rinsing,pores were found only in the films formerly containing PVP or PEG,and the shapes and the sizes were closely correlated with the initial morphologies of the PVP or PEG domains.However,the shade of color,the abrasion fastness,and the permeability of the dyed fabric were independent of the type of the post-added hydrophilic polymer.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51278403 and 51308445)the Program for Innovative Research Team in University(IRT 13089)
文摘In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.
基金Funded by the National Natural Science Foundation of China (No.50872127)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘The effects of water/binder ratio (w/b) on the toughness behavior, compressive strength and flexural strength of engineered cementitious composites (ECC) were investigated. The w/b ratios of 0.25, 0.31, 0.33 and 0.37 were selected and the specimens were tested at the ages of 7 d and 28 d. The experimental results showed that there was a corresponding increase in first cracking strength, modulus of rupture, compressive strength and flexural strength with the decrease of w/b. Within the w/b range of 0.25-0.37, higher w/b was found to have improved effects on deflection, strain hardening index and toughness index of ECC. In the permission of meeting the requirement of compressive strength grade, selecting higher w/b in mix design will help to obtain robust ECC.
基金Supported by the National Natural Science Foundation of China (Nos. 40806029, 40676068)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA09Z178)
文摘Diatoms are widely distributed in many temperate areas and some species frequently form extensive blooms in spring. Hence, monitoring the variations of specific genera or species of diatoms is necessary for studying phytoplankton population dynamics in marine ecosystems. To test whether pigment ratios can be used to identify diatoms at a below-class taxonomic level, we analyzed 14 species/strains of diatoms isolated from Chinese seas using high performance liquid chromatography (HPLC). We normalized all pigment concentrations to total chlorophyll a to calculate the ratios of pigment to chlorophyll a, and calculated the ratios between accessory pigments (or pigment sums). Cluster analysis indicated that these diatoms could be classified into four clusters in terms of three accessory pigment ratios: chlorophyll c2: chlorophyll Cl, fucoxanthin:total chlorophyll c and diadinoxanthin:diatoxanthin. The classification results matched well with those of biological taxonomy. To test the stability of the classification, pigment data from one species, cultured under different light intensities, and five new species/strains were calculated and used for discriminant analysis. The results show that the classification of diatom species using pigment ratio suites was stable for the variations of pigment ratios of species cultured in different light intensities. The introduction of new species, however, may confuse the classification within the current scheme. Classification of marine diatoms using pigment ratio suites is potentially valuable for the fine chemotaxonomy of phytoplankton at taxonomic levels below class and would advance studies on phytoplankton population dynamics and marine ecology.
文摘Pigment printing was carried out on lab scale by simple screen-printing techniques. By the application of acrylate and butadiene based binder, the crocking fastness, formaldehyde release and PVC migration of fabric printed with Imparon red KB pigment was evaluated. The effect of curing time on K/S values was also investigated. It has been found that butadiene based binder shows good performance in terms of crocking fastness, formaldehyde release and PVC migra-tion. It has also been observed that by increasing the binder concentration, the release of formaldehyde decreased and by increasing the curing time, the K/S values of printed fabric were decreased.
文摘To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.
文摘The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.
基金Science Foundation of Zhejiang Province,China(No.Y4080375)Program for Changjiang Scholars and Innovative Research Teamin University,China(No.IRT0654)
文摘Aiming at improving the permeability of the pigment dyed fabrics,two kinds of hydrophilic polymers(polyvinyl pyrrolidone(PVP),and polyethylene glycol(PEG)were fed into the styrene-butyl acrylate(St-BuA)copolymer latex binder respectively to prepare films with macropores.The effects of the post-added polymers on the latex film formation process and film structures were studied and the performance of the dyed fabrics was evaluated.It was found that the drying process could still be divided into three stages even after the addition of PVP and PEG.And the water evaporation rate during the first and last stage remained the same as usual.However,after the addition of PVP,the onset of the second stage was delayed to high volume fraction,and PVP formed into spherical dispersion phase with 300 nm in diameter.It provided a great deal of interface between the latex polymer and the PVP phase,which led to an increase in the water evaporation rate during the second stage.A different case was found after the feeding of PEG.Firstly,the first stage ended at low volume fraction and a decreased evaporation rate was observed in the second stage.Secondly,the PEG dispersion appeared as finger-like structure in the transmission electron microscopy(TEM)images with 9μm in length.After rinsing,pores were found only in the films formerly containing PVP or PEG,and the shapes and the sizes were closely correlated with the initial morphologies of the PVP or PEG domains.However,the shade of color,the abrasion fastness,and the permeability of the dyed fabric were independent of the type of the post-added hydrophilic polymer.