The experimental study in this paper focuses on the effects of the layer orientation and sample shape on failure strength and fracture pattern of samples tested under Brazilian test conditions(i.e.diametrical loading ...The experimental study in this paper focuses on the effects of the layer orientation and sample shape on failure strength and fracture pattern of samples tested under Brazilian test conditions(i.e.diametrical loading of cylindrical discs)for one particular layered sandstone which is from Modave in the south of Belgium.The variations of the strength in combination with the failure patterns are examined as a function of the inclination angle between the layer plane and the loading direction.The experimental,results clearly show that the induced fracture patterns are a combination of tensile and/or shear fractures.In shape effect experiments the layer thickness and the number of layer boundaries are investigated.Different blocks of Modave sandstone are used to prepare samples.The layer thickness is different among the various blocks,but the layer thickness in each studied rock block can be considered to be constant;hence,the number of layer boundaries changes according to the sample diameter for samples of the same block.The experimental study shows that the layer thickness plays a more important role than the number of layer boundaries per sample.展开更多
Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium visc...Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders. By contrast, the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders. Notably, the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44. We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.展开更多
Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for de...Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for determining the basic mechanical properties of rocks and revealing the mechanism of isolated pillar disasters under unidimensional stress.The shape effects of rock mechanical properties under uniaxial compression are mainly quantitatively reflected in the specific shape ratios of rocks.Therefore,it is necessary to study the detailed shape ratio effects on the mechanical properties of rectangular prism rock specimens and isolated pillars under uniaxial compressive stress.In this study,granite,marble and sandstone rectangular prism specimens with various height to width ratios(r)and width to thickness ratios(u)were prepared and tested.The study results show that r and u have a great influence on the bearing ability of rocks,and thin or high rocks have lower uniaxial compressive strength.Reducing the level of r can enhance the u effect on the strength of rocks,and increasing the level of u can enhance the r effect on the strength of rocks.The lateral strain on the thickness side of the rock specimen is larger than that on the width side,which implies that crack growth occurs easily on the thickness side.Considering r and u,a novel strength prediction model of isolated pillars was proposed based on the testing results,and the prediction model was used for the safety assessment of 179 isolated pillars in the Xianglu Mountain Tungsten Mine.展开更多
DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation in...DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.展开更多
The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron micr...The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffractometer,and differential scanning calorimeter(DSC).Experimental results show that bainite,γ2,and α phase precipitates occur with the aging effect in the alloy.After aging at 300°C,the bainitic precipitates appear at the early stages of aging,while the precipitates of γ2 phase are observed for a longer aging time.When the aging temperature increases,the bainite gradually evolves into γ2 phase and equilibrium α phase(bcc) precipitates from the remaining parent phase.Thus,the bainite,γ2,and α phases appear,while the martensite phase disappears progressively in the alloy.The bainitic precipitates decrease the reverse transformation temperature while the γ2 phase precipitates increase these temperatures with a decrease of solute content in the retained parent phase.On the other hand,these precipitations cause an increasing in hardness of the alloy.展开更多
The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temper...The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility.展开更多
Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformatio...Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformation temperatures,and mechanical properties were investigated by optical microscopy,field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests,and microhardness tests.Varying the microwave temperature and holding time was found to strongly affect the density of porosity,presence of precipitates,transformation temperatures,and mechanical properties.The lowest density and smallest pore size were observed in the Ti–51at%Ni samples sintered at 900°C for 5 min or at 900°C for 30 min.The predominant martensite phases of β2 and β19′ were observed in the microstructure of Ti–51at%Ni,and their existence varied in accordance with the sintering temperature and the holding time.In the DSC thermograms,multi-transformation peaks were observed during heating,whereas a single peak was observed during cooling;these peaks correspond to the presence of the β2,R,and β19′ phases.The maximum strength and strain among the Ti–51at%Ni SMAs were 1376 MPa and 29%,respectively,for the sample sintered at 900°C for 30 min because of this sample's minimal porosity.展开更多
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ...The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.展开更多
A new finite strain elatoplastic J2-flow model with coupling effects of both isotropic and anisotropic hardening is proposed with the co-rotational logarithmic rate.In terms of certain single-variable shape functions ...A new finite strain elatoplastic J2-flow model with coupling effects of both isotropic and anisotropic hardening is proposed with the co-rotational logarithmic rate.In terms of certain single-variable shape functions representing uniaxial loading and unloading curves,explicit multi-axial expressions for the three hardening quantities incorporated in the new model proposed are derived in unified forms for the purpose of automatically and accurately simulating complex pseudoelastic-to-plastic transition effects of shape memory alloys(SMAs)under multiple loading-unloading cycles.Numerical examples show that with only a single parameter of direct physical meaning for each cycle,accurate and explicit simulations may be achieved for extensive data from multiple cycle tests.展开更多
A simplified model was developed to describe the Curie temperature suppression of ferromagnetic nanoparticles. Based on a size and shape dependent model of cohesive energy, the critical temperature variations of ferro...A simplified model was developed to describe the Curie temperature suppression of ferromagnetic nanoparticles. Based on a size and shape dependent model of cohesive energy, the critical temperature variations of ferromagnetic nanoparticles were deduced. It is predicted that the Curie temperature of nanoparticles depends on both size and shape conditions, among which the temperature suppression is strongly influenced by the particle size and the shape effect is comparably minor. The calculation values for freestanding nanoparticles are in good agreement with other theoretical model and the experimental results. The model is also potential for predictions for the nanoparticles embedded in different substrates.展开更多
The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void...The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void shape effect and the Fleck-Hutchinson phenomenological strain gradient plasticity theory is employed to capture the size effects. It is found that the combined effects of void size and void shape are mainly controlled by the remote stress triaxiality. Based on this, a new size-dependent void growth model similar to the Rice-Tracey model is proposed and an important conclusion about the size-dependent void growth is drawn: the growth rate of the void with radius smaller than a critical radius rc may be ignored. It is interesting that rc. is a material constant independent of the initial void shape and the remote stress triaxiality.展开更多
This paper presents the effects of surface effects in the cavity of variable curvature. The wave function expansion method and the conformal mapping method are used in the solution of dynamic stress concentration fact...This paper presents the effects of surface effects in the cavity of variable curvature. The wave function expansion method and the conformal mapping method are used in the solution of dynamic stress concentration factor around an irregularly shaped cavity at nano-scale. The stress boundary conditions on the surface are obtained by using the generalized Young-Laplace equation. The results show that the degree of stress concentration becomes more obvious with curvature increasing. Taking the elliptical cavity as an example, the influence of the ration of the major and minor axis of the ellipse, the numbers of the incident wave and the surface effects on the dynamic stress concentration factor are analyzed. The ration of the major and minor axis, the incident wave frequency and the surface effects show the pronounced effects on the dynamic stress concentration distributions.展开更多
Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heatin...Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heating was performed at the same constant rate of increasing temperature while cooling was carried out at different rates of decreasing temperature. For each cooling rate, the temperature decreased in the same thermal interval. During each cooling stage, an exothermic peak(maximum) was observed on the DSC thermogram. This peak was associated with forward martensitic transformation. The DSC thermograms were analyzed with PROTEUS software: the critical martensitic transformation start(Ms) and finish(Mf) temperatures were determined by means of integral and tangent methods, and the dissipated heat was evaluated by the area between the corresponding maximum plot and a sigmoid baseline. The effects of the increase in cooling rate, assessed from a calorimetric viewpoint, consisted in the augmentation of the exothermic peak and the delay of direct martensitic transformation. The latter had the tendency to move to lower critical transformation temperatures. The martensite plates changed in morphology by becoming more oriented and by an augmenting in surface relief, which corresponded with the increase in cooling rate as observed by scanning electron microscopy(SEM) and atomic force microscopy(AFM).展开更多
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl...Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).展开更多
The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a ...The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.展开更多
Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the q...Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.展开更多
The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical ...The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical resistivity measurement. It is found that the shape recovery rate decreases as the heating rate decreases. It can reach 75% when the heating rate is 20 ℃/min, while it is only 8% when the heating rate is 1 ℃/min. In situ microstructure observation indicates that the dependence of shape memory effect on recovery heating rate is caused by the stabilization of twinned martensite induced by deformation. The analysis of electrical resistivity shows that the stabilization of twinned martensite may be ascribed to formation of compound defects of vacancies and dislocations at the boundaries of twinned martensite during the slow heating. The compound defects prevent the reverse transformation of twinned martensite.展开更多
基金The fnancial support of the Research Council of the Katholieke Universiteit Leuven(OT-project OT/03/35)
文摘The experimental study in this paper focuses on the effects of the layer orientation and sample shape on failure strength and fracture pattern of samples tested under Brazilian test conditions(i.e.diametrical loading of cylindrical discs)for one particular layered sandstone which is from Modave in the south of Belgium.The variations of the strength in combination with the failure patterns are examined as a function of the inclination angle between the layer plane and the loading direction.The experimental,results clearly show that the induced fracture patterns are a combination of tensile and/or shear fractures.In shape effect experiments the layer thickness and the number of layer boundaries are investigated.Different blocks of Modave sandstone are used to prepare samples.The layer thickness is different among the various blocks,but the layer thickness in each studied rock block can be considered to be constant;hence,the number of layer boundaries changes according to the sample diameter for samples of the same block.The experimental study shows that the layer thickness plays a more important role than the number of layer boundaries per sample.
基金This work is supported by the Fundamental Research Funds for the Central Universities of China (No.WK2060200020) and the China Postdoctoral Science Foundation (No.2015M581998).
文摘Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders. By contrast, the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders. Notably, the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44. We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.
基金funded by the National Natural Science Foundation of China(Nos.51774326,42177164,41807259,and41702350)Hunan Young Talent(No.2021RC3007)+2 种基金the open fund of Mining Disaster Prevention and Control Ministry Key Laboratory at Shandong University of Science and Technology(No.MDPC201917)the Fundamental Research Funds for the Central Universities of Central South University(No.2019zzts668)the Innovation-Driven Project of Central South University(No.2020CX040)。
文摘Isolated pillars in underground mines are subjected to uniaxial stress,and the load bearing cross-section of pillars is commonly rectangularly shaped.In addition,the uniaxial compression test(UCT)is widely used for determining the basic mechanical properties of rocks and revealing the mechanism of isolated pillar disasters under unidimensional stress.The shape effects of rock mechanical properties under uniaxial compression are mainly quantitatively reflected in the specific shape ratios of rocks.Therefore,it is necessary to study the detailed shape ratio effects on the mechanical properties of rectangular prism rock specimens and isolated pillars under uniaxial compressive stress.In this study,granite,marble and sandstone rectangular prism specimens with various height to width ratios(r)and width to thickness ratios(u)were prepared and tested.The study results show that r and u have a great influence on the bearing ability of rocks,and thin or high rocks have lower uniaxial compressive strength.Reducing the level of r can enhance the u effect on the strength of rocks,and increasing the level of u can enhance the r effect on the strength of rocks.The lateral strain on the thickness side of the rock specimen is larger than that on the width side,which implies that crack growth occurs easily on the thickness side.Considering r and u,a novel strength prediction model of isolated pillars was proposed based on the testing results,and the prediction model was used for the safety assessment of 179 isolated pillars in the Xianglu Mountain Tungsten Mine.
基金the National Natural Science Foundation of China under grant No. 59601004,59731030.
文摘DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.
文摘The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffractometer,and differential scanning calorimeter(DSC).Experimental results show that bainite,γ2,and α phase precipitates occur with the aging effect in the alloy.After aging at 300°C,the bainitic precipitates appear at the early stages of aging,while the precipitates of γ2 phase are observed for a longer aging time.When the aging temperature increases,the bainite gradually evolves into γ2 phase and equilibrium α phase(bcc) precipitates from the remaining parent phase.Thus,the bainite,γ2,and α phases appear,while the martensite phase disappears progressively in the alloy.The bainitic precipitates decrease the reverse transformation temperature while the γ2 phase precipitates increase these temperatures with a decrease of solute content in the retained parent phase.On the other hand,these precipitations cause an increasing in hardness of the alloy.
基金Shanxi Province Natural Science FOundation State Key Laboratory of Solidilication Processing.
文摘The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility.
基金financial support under the University Research Grant No.Q.J130000.3024.00M57
文摘Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformation temperatures,and mechanical properties were investigated by optical microscopy,field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests,and microhardness tests.Varying the microwave temperature and holding time was found to strongly affect the density of porosity,presence of precipitates,transformation temperatures,and mechanical properties.The lowest density and smallest pore size were observed in the Ti–51at%Ni samples sintered at 900°C for 5 min or at 900°C for 30 min.The predominant martensite phases of β2 and β19′ were observed in the microstructure of Ti–51at%Ni,and their existence varied in accordance with the sintering temperature and the holding time.In the DSC thermograms,multi-transformation peaks were observed during heating,whereas a single peak was observed during cooling;these peaks correspond to the presence of the β2,R,and β19′ phases.The maximum strength and strain among the Ti–51at%Ni SMAs were 1376 MPa and 29%,respectively,for the sample sintered at 900°C for 30 min because of this sample's minimal porosity.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574027 and 51604206)the Financial Support from the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-22)
文摘The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.
基金Project supported by the National Natural Science Foundation of China(No.11372172)and the Start-up Fund from Jinan University in Guangzhou of China。
文摘A new finite strain elatoplastic J2-flow model with coupling effects of both isotropic and anisotropic hardening is proposed with the co-rotational logarithmic rate.In terms of certain single-variable shape functions representing uniaxial loading and unloading curves,explicit multi-axial expressions for the three hardening quantities incorporated in the new model proposed are derived in unified forms for the purpose of automatically and accurately simulating complex pseudoelastic-to-plastic transition effects of shape memory alloys(SMAs)under multiple loading-unloading cycles.Numerical examples show that with only a single parameter of direct physical meaning for each cycle,accurate and explicit simulations may be achieved for extensive data from multiple cycle tests.
基金Project(FY2006) supported by the JSPS Postdoctoral Fellowship For Foreign ResearchesProject supported by the 21st Century COE Program, "Mechanical Systems Innovation," by the Ministry of Education, Culture, Sports, Science and Technology, Japan
文摘A simplified model was developed to describe the Curie temperature suppression of ferromagnetic nanoparticles. Based on a size and shape dependent model of cohesive energy, the critical temperature variations of ferromagnetic nanoparticles were deduced. It is predicted that the Curie temperature of nanoparticles depends on both size and shape conditions, among which the temperature suppression is strongly influenced by the particle size and the shape effect is comparably minor. The calculation values for freestanding nanoparticles are in good agreement with other theoretical model and the experimental results. The model is also potential for predictions for the nanoparticles embedded in different substrates.
基金The project supported by the National Natural Science Foundation of China(A10102006)the New Century Excellent Talents in Universities of China.
文摘The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void shape effect and the Fleck-Hutchinson phenomenological strain gradient plasticity theory is employed to capture the size effects. It is found that the combined effects of void size and void shape are mainly controlled by the remote stress triaxiality. Based on this, a new size-dependent void growth model similar to the Rice-Tracey model is proposed and an important conclusion about the size-dependent void growth is drawn: the growth rate of the void with radius smaller than a critical radius rc may be ignored. It is interesting that rc. is a material constant independent of the initial void shape and the remote stress triaxiality.
文摘This paper presents the effects of surface effects in the cavity of variable curvature. The wave function expansion method and the conformal mapping method are used in the solution of dynamic stress concentration factor around an irregularly shaped cavity at nano-scale. The stress boundary conditions on the surface are obtained by using the generalized Young-Laplace equation. The results show that the degree of stress concentration becomes more obvious with curvature increasing. Taking the elliptical cavity as an example, the influence of the ration of the major and minor axis of the ellipse, the numbers of the incident wave and the surface effects on the dynamic stress concentration factor are analyzed. The ration of the major and minor axis, the incident wave frequency and the surface effects show the pronounced effects on the dynamic stress concentration distributions.
基金supported by the project PN-II-ID-PCE-2012-4-0033,contract 13/2013
文摘Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heating was performed at the same constant rate of increasing temperature while cooling was carried out at different rates of decreasing temperature. For each cooling rate, the temperature decreased in the same thermal interval. During each cooling stage, an exothermic peak(maximum) was observed on the DSC thermogram. This peak was associated with forward martensitic transformation. The DSC thermograms were analyzed with PROTEUS software: the critical martensitic transformation start(Ms) and finish(Mf) temperatures were determined by means of integral and tangent methods, and the dissipated heat was evaluated by the area between the corresponding maximum plot and a sigmoid baseline. The effects of the increase in cooling rate, assessed from a calorimetric viewpoint, consisted in the augmentation of the exothermic peak and the delay of direct martensitic transformation. The latter had the tendency to move to lower critical transformation temperatures. The martensite plates changed in morphology by becoming more oriented and by an augmenting in surface relief, which corresponded with the increase in cooling rate as observed by scanning electron microscopy(SEM) and atomic force microscopy(AFM).
文摘Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).
基金Project(50771086) supported by the National Natural Science Foundation of ChinaProject(NCET) supported by Program for New Century Excellent Talents in University, China+1 种基金Project(NCETFJ) supported by Program for New Century Excellent Talents in Fujian Province University, ChinaProject(2009H0039) supported by Fujian Provincial Department of Science and Technology, China
文摘The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.
基金This work is supported by the National Natural Science Foundation of China (No.21303212 and No.21573209), the Ministry of Science and Technology of China (No.2013CB834602).
文摘Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.
文摘The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical resistivity measurement. It is found that the shape recovery rate decreases as the heating rate decreases. It can reach 75% when the heating rate is 20 ℃/min, while it is only 8% when the heating rate is 1 ℃/min. In situ microstructure observation indicates that the dependence of shape memory effect on recovery heating rate is caused by the stabilization of twinned martensite induced by deformation. The analysis of electrical resistivity shows that the stabilization of twinned martensite may be ascribed to formation of compound defects of vacancies and dislocations at the boundaries of twinned martensite during the slow heating. The compound defects prevent the reverse transformation of twinned martensite.