期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
3D finite elements analysis of vertically loaded composite piled raft 被引量:8
1
作者 Reza Ziaie Moayed Ehsan Izadi Mehrad Mirsepahi 《Journal of Central South University》 SCIE EI CAS 2013年第6期1713-1723,共11页
In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or... In recent years,a new type of foundation named composite piled raft foundation (also called long short composite piled raft) has been developed.Where designing shallow foundations would mean unacceptable settlement,or other environmental risks exist which could impair the structure in the future,composite piled raft foundations could be used.Finite element method was applied to study the behavior of this type of foundation subjected to vertical loading.In order to determine an optimal pile arrangement pattern which yields the minimum settlement,various pile arrangements under different vertical stress levels were investigated.Results show that with increasing the vertical stress on the raft,the effectiveness of the arrangements of short and long piles become more visible.In addition,a new factor named "composite piled raft efficiency" (CPRE) has been defined which determines the efficiency of long short piles arrangement in a composite piled raft foundation.This factor will increase when short piles take more axial stresses and long piles take less axial stresses.In addition,it is found that the changes in settlements for different long short piles arrangement are in a well agreement with changes in values of CPRE ratio.Thus,CPRE ratio can be used as a factor to determine the efficiency of piles arrangements in composite piled raft foundation from the view point of reducing raft settlements. 展开更多
关键词 composite piled raft SETTLEMENT composite piled raft efficiency long-short pile arrangement CUSHION
下载PDF
Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system 被引量:2
2
作者 Qian-Qing ZHANG Shan-Wei LIU +2 位作者 Ruo-Feng FENG Jian-Gu QIAN Chun-Yu CUI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第4期961-982,共22页
A uniform arrangement of individual piles is commonly adopted in the conventional pile group foundation,and basin-shaped settlement is often observed in practice.Large differential settlement of pile groups will decre... A uniform arrangement of individual piles is commonly adopted in the conventional pile group foundation,and basin-shaped settlement is often observed in practice.Large differential settlement of pile groups will decrease the use-safety requirements of building,even cause the whole-building tilt or collapse.To reduce differential settlement among individual piles,non-uniformly arranged pile groups can be adopted.This paper presents a finite element analysis on the response of pile groups with different layouts of individual piles in pile groups.Using the userdefined subroutine FRIC as the secondary development platform,a softening model of skin friction and a hyperbolic model of end resistance are introduced into the contact pair calculation of ABAQUS software.As to the response analysis of a single pile,the reliability of the proposed secondary development method of ABAQUS software is verified using an iterative computer program.The reinforcing effects of individual piles is then analyzed using the present finite element analysis.Furthermore,the response of non-uniformly arranged pile groups,e.g.,individual piles with variable length and individual piles with variable diameter,is analyzed using the proposed numerical analysis method.Some suggestions on the layout of individual piles are proposed to reduce differential settlement and make full use of the bearing capacity of individual piles in pile groups for practical purposes. 展开更多
关键词 numerical simulation non-uniformly arranged pile groups differential settlement pile-soil interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部