The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure ...The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms.展开更多
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccen...This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.展开更多
In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elas...In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elastic foundation approach in which the soil reaction on the pile is related directly to the pile lateral deflection. In this investigation, the modulus of subgrade reactions is assumed to be constant along the pile depth. Parametric study through numerical examples is carried out to prove the validity and accuracy of the obtained results. In general, the derived displacement field can be used to study pile response in multilayered soil profiles by subdividing the pile into a number of elements. It is found that tapered piles show stiffer behavior than that for prismatic ones having the same material volume with an optimum stress distribution along the pile depth. Accordingly, tapered piles are more efficient and economic than those having the same material volume. Verification is also carried out for the obtained results through finite element analysis and the selected number of elements gives a very good agreement for lateral deflection and a larger number of elements is required to obtain better results for bending moment because of moment loss resulting from the lack of shear diagram.展开更多
Dynamic behavior of single pile embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's function f...Dynamic behavior of single pile embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's function for ring loads. The influence of soil anisotropy on the dynamic behavior of piles is examined through a series of parametric studies.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. U1404527 and 51508166)Opening Laboratory for Deep Mine Construction of Henan Polytechnic University (2014KF-07)
文摘The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms.
基金Thailand Research Fund and Commission on Higher Education,Ministry of Education,Thailand Under Grant No.MRG5180268
文摘This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.
文摘In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elastic foundation approach in which the soil reaction on the pile is related directly to the pile lateral deflection. In this investigation, the modulus of subgrade reactions is assumed to be constant along the pile depth. Parametric study through numerical examples is carried out to prove the validity and accuracy of the obtained results. In general, the derived displacement field can be used to study pile response in multilayered soil profiles by subdividing the pile into a number of elements. It is found that tapered piles show stiffer behavior than that for prismatic ones having the same material volume with an optimum stress distribution along the pile depth. Accordingly, tapered piles are more efficient and economic than those having the same material volume. Verification is also carried out for the obtained results through finite element analysis and the selected number of elements gives a very good agreement for lateral deflection and a larger number of elements is required to obtain better results for bending moment because of moment loss resulting from the lack of shear diagram.
文摘Dynamic behavior of single pile embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's function for ring loads. The influence of soil anisotropy on the dynamic behavior of piles is examined through a series of parametric studies.