期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Full Wave Solution for Hydrodynamic Behaviors of Pile Breakwater
1
作者 朱大同 《China Ocean Engineering》 SCIE EI CSCD 2013年第3期323-334,共12页
Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwa... Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwater are totally included in the model. The formulae of wave reflection and transmission coefficients are obtained. The accuracy of the present model is verified by a comparison with existing results. It is found that the predicted wave reflection and transmission coefficients for the zero order are all highly consistent with the experimental data (Hagiwara, 1984; Isaacson et al., 1998) and plane wave solutions (Zhu, 2011). The losses of the wave energy for the fluid passing through slits play an important role, which removes the phenomena of enhanced wave transmission. 展开更多
关键词 full wave theory pile breakwater flow resistance wave reflection wave transmission Rayleigh expansion
下载PDF
Hydroelastic Investigation on A Pile Breakwater Integrated with A Flexible Tail for Long-Wave Attenuation
2
作者 ZHANG Chong-wei ZHUANG Qian-ze +2 位作者 LI Jin-xuan HUANG Luo-feng NING De-zhi 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期667-681,共15页
A novel concept of wave attenuator is proposed for the defense of long waves,through integrating a flexible tail to the lee-side surface of a pile breakwater.The flexible tail works as a floating blanket made up of hi... A novel concept of wave attenuator is proposed for the defense of long waves,through integrating a flexible tail to the lee-side surface of a pile breakwater.The flexible tail works as a floating blanket made up of hinged blocks,whose scale and stiffness can be easily adjusted.A two-phase-flow numerical model is established based on the open-source computational fluid dynamics(CFD)code OpenFOAM to investigate its wave attenuation performance.Incompressible Navier−Stokes equations are solved in the fluid domain,where an additional computational solid mechanics(CSM)solver is embedded to describe the elastic deformation of the floating tail.The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body.The accuracy of the numerical model is validated through comparison with experimental data.Effects of the flexible tail on performance of the pile breakwater are investigated systematically.Dynamic behaviours of the tail are examined,and characteristics of its natural frequency are identified.For safety reasons,the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined.It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater.A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater.The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail. 展开更多
关键词 wave attenuator pile breakwater OPENFOAM fluid-structure interaction wave transmission coastal protection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部