期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Advances in ground heat exchangers for space heating and cooling:Review and perspectives 被引量:1
1
作者 Ping Cui Weibo Yang +3 位作者 Wenke Zhang Ke Zhu Jeffrey D.Spitler Mingzhi Yu 《Energy and Built Environment》 2024年第2期255-269,共15页
As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency o... As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency of the ground source heat pump(GSHP)systems.This paper presents a comprehensive review of developments and advances of three kinds of GHE,including vertical borehole GHE(VBGHE),Pile GHE(PGHE),and deep borehole GHE(DBGHE)which are currently popular in larger GSHP systems.Firstly,analytical models proposed to ana-lyze heat transfer process of VBGHE with different geological conditions are summarized,such as homogenous or heterogeneous ground,with or without groundwater advection.Numerical and short-time step models and measures to improve GHE thermal performance are also reviewed.Secondly,a summary of research advances in PGHE is provided,which includes the heat transfer models of PGHE,the effects of geometric structure,oper-ation modes,pile spacing,use of phase change material(PCM),thermal properties of PCM,thermo-mechanical behavior and/or thermal performance of PGHE.The effects of groundwater flow direction and velocity on PGHE are also summarized in brief.Lastly,models of three kinds of DBGHEs,i.e.,deep coaxial GHE(DCGHE),deep U-bend GHE(DUGHE)and super-long gravity heat pipe(SLGHP),are reviewed.The physical bases of the dif-ferent analytical models are elaborated and also their advantages and disadvantages are described.Advances in numerical modelling and improving numerical model calculation speed of DCBHE,DCBHE array,and DUBHE are summarized.The review provides a meaningful reference for the further study of GHEs. 展开更多
关键词 Vertical borehole ground heat exchanger pile ground heat exchanger Deep borehole ground heat exchanger Modelling
原文传递
Evaluation of Measurement Accuracy of Underground Thermometers Using Steel-Pipe Piles
2
作者 Masahito Oguma Ayako Funabiki Mitsuru Endo 《Journal of Energy and Power Engineering》 2016年第7期385-391,共7页
For ground source heat utilization systems, pile heat exchangers are sometimes used. In order for these systems to achieve high performance, control of the system dynamics is important, and the underground temperature... For ground source heat utilization systems, pile heat exchangers are sometimes used. In order for these systems to achieve high performance, control of the system dynamics is important, and the underground temperature must he known. Typically, underground temperature is measured using a thermometer in a borehole. However, in the case of pile heat exchangers, a different method is required, making the system expensive to set up. To overcome this problem, the installation of underground thermometers in the heat exchanger piles themselves is proposed in the present study. The proposed thermometer system consists of thermocouples packed in grout such as silica sand within the piles. However, there is a possibility of measurement errors due to vertical thermal conduction in the steel pipes, and it is important to estimate the measurement accuracy before the development of this system. In the present study, the measurement accuracy is estimated using numerical simulations and then confirmed experimentally. The underground temperature profiles inside and outside the pile are compared. The results indicate that the proposed system offers sufficient accuracy for application to pile heat exchangers. 展开更多
关键词 heat conduction underground thermometer pile heat exchanger.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部