期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reliability of design approaches for axially loaded offshore piles and its consequences with respect to the North Sea
1
作者 Kirill A.Schmoor Martin Achmus +1 位作者 Aligi Foglia Maik Wefer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1112-1121,共10页
In the near future, several offshore wind farms are planned to be built in the North Sea. Therefore, jacket and tripod constructions with mainly axially loaded piles are suitable as support structures. The current des... In the near future, several offshore wind farms are planned to be built in the North Sea. Therefore, jacket and tripod constructions with mainly axially loaded piles are suitable as support structures. The current design of axial bearing resistance of these piles leads to deviant results regarding the pile resistance when different design methods are adopted. Hence, a strong deviation regarding the required pile length must be addressed. The reliability of a design method can be evaluated based on a model error which describes the quality of the considered design method by comparing measured and predicted pile bearing resistances. However, only few pile load tests are reported with regard to the boundary conditions in the North Sea. This paper presents 6 large-scale axial pile load tests which were incorporated within a new model error approach for the current design methods used for the axial bearing resistance,namely API Main Text method and cone penetration test(CPT)-based design methods, such as simplified ICP-05, offshore UWA-05, Fugro-05 and NGI-05 methods. Based on these new model errors, a reliabilitybased study towards the safety was conducted by performing a Monte-Carlo simulation. In addition,consequences regarding the deterministic pile design in terms of quality factors were evaluated. It is shown that the current global safety factor(GSF) prescribed and the partial safety factors are only valid for the API Main Text and the offshore UWA-05 design methods; whereas for the simplified ICP-05,Fugro-05 and NGI-05 design methods, an increase in the required embedded pile length and thus in the GSF up to 2.69, 2.95 and 3.27, respectively, should be considered to satisfy the desired safety level according to DIN EN 1990 of b ? 3.8. Further, quality factors for each design method on the basis of all reliability-based design results were derived. Hence, evaluation of each design method regarding the reliability of the pile capacity prediction is possible. 展开更多
关键词 pile load test Model error System reliability Global safety factors(GSFs) Quality factors
下载PDF
Discussion on pile axial load test methods and their applicability in cold regions
2
作者 JiaWei Gao Ji Chen +2 位作者 Xin Hou QiHang Mei YongHeng Liu 《Research in Cold and Arid Regions》 CSCD 2022年第4期239-249,共11页
The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms.Affected by the temper... The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms.Affected by the temperature and ice content of frozen ground,the interface contact relationship between pile foundation and frozen soil is complicated,making pile axial load measurements more uncertain than that in non-frozen ground.Therefore,it is necessary to gain an in-depth understanding of the current pile axial load test methods.Four methods are systematically reviewed:vibrating wire sensors,strain gauges,sliding micrometers,and optical fiber strain sensors.At the same time,the applicability of the four test methods in frozen soil regions is discussed in detail.The first two methods are mature and commonly used.The sliding micrometer is only suitable for short-term measurement.While the Fiber Bragg grating(FBG)strain gauge meets the monitoring requirements,the Brillouin optical time-domain reflectometer(BOTDR)needs further verification.This paper aims to provide a technical reference for selecting and applying different methods in the pile axial load test for the stability study and bearing capacity assessment of pile foundations in cold regions. 展开更多
关键词 pile axial load Test methods pile shaft resistance SENSORS Cold regions
下载PDF
Numerical Analysis of Laterally Loaded Long Piles in Cohesionless Soil
3
作者 Ayman Abd-Elhamed Mohamed Fathy Khaled M.Abdelgaber 《Computers, Materials & Continua》 SCIE EI 2022年第5期2175-2190,共16页
The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of ... The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model.The governing differential equation for a laterally loaded pile on elastic subgrade is derived.Based on LegendreGalerkin method and Runge-Kutta formulas of order four and five,the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free-and fixed-headed piles.Mathematica,as one of the world’s leading computational software,was employed for the implementation of solutions.The proposed numerical techniques provide the responses for the entire pile length under the applied lateral load.The utilized numerical approaches are validated against experimental and analytical results of previously published works showing a more accurate estimation of the response of laterally loaded piles.Therefore,the proposed approaches can maintain both mathematical simplicity and comparable accuracy with the experimental results. 展开更多
关键词 Numerical solution laterally loaded pile cohesionless soil Legendre-Galerkin RUNGE-KUTTA
下载PDF
Dynamic response of a pile embedded in elastic half space subjected to harmonic vertical loading
4
作者 Changjie Zheng Shishun Gan +1 位作者 Xuanming Ding Lubao Luan 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第6期668-673,共6页
An analytical method is developed to investigate the dynamic response of a pile subjected to harmonic vertical loading.The pile is modeled as a one-dimensional(1D)elastic rod.The elastic soil is divided into a homog... An analytical method is developed to investigate the dynamic response of a pile subjected to harmonic vertical loading.The pile is modeled as a one-dimensional(1D)elastic rod.The elastic soil is divided into a homogeneous half space underlying the base of pile and a series of infinitesimally thin layers along the vertical shaft of pile.The analytical solution for the soil-pile dynamic interaction problem is obtained by the method of Hankel transformation.The proposed solution is compared with the classical plane strain solution.Arithmetical examples are presented to demonstrate the sensitivity of the vertical impedance of the pile to relevant parameters. 展开更多
关键词 pile Dynamic response Vertical loading
原文传递
Application of Back Analysis on Laterally Loaded Single Pile
5
作者 吴锋 龚景海 富坤 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第6期696-702,共7页
In views of the limitations of the existing methods for calculating the pile foundation capacity, a back analysis approach of the m-value is introduced. In order to consider the sensitivity of pile behavior to the m-v... In views of the limitations of the existing methods for calculating the pile foundation capacity, a back analysis approach of the m-value is introduced. In order to consider the sensitivity of pile behavior to the m-value,the relationships between the applied horizontal loads at pile head and the corresponding m-value along with the pile stiffness changes are studied. Based on statistics data from the extensive in-situ tests, the back analysis results suggest an exponential expression for the m-value in various soil conditions and horizontal displacements at pile head. This method is capable of providing an accurate m-value in calculating the pile responses under lateral loads. 展开更多
关键词 laterally loaded piles M-METHOD back analysis horizontal displacement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部