期刊文献+
共找到1,271篇文章
< 1 2 64 >
每页显示 20 50 100
Microstructure,Corrosion and Mechanical Properties of Medium-Thick 6061-T6 Alloy/T2 Pure Cu Dissimilar Joints Produced by Double Side Friction Stir Z Shape Lap-Butt Welding
1
作者 Jiuxing Tang Guoxin Dai +5 位作者 Lei Shi Chuansong Wu Sergey Mironov Surendra Kumar Patel Song Gao Mingxiao Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期385-400,共16页
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi... A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance. 展开更多
关键词 DS-FSZW Al/Cu dissimilar joint Corrosion behaviour Intermetallic compounds MICROSTRUCTURE mechanical properties
下载PDF
Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
2
作者 Xinxin Nie Qian Yin +7 位作者 Manchao He Qi Wang Hongwen Jing Bowen Zheng Bo Meng Tianci Deng Zheng Jiang Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2417-2434,共18页
This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm ... This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads. 展开更多
关键词 layered samples anisotropic angle joint roughness coefficient mechanical properties acoustic emission response fracturing evolution failure modes
下载PDF
Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding 被引量:8
3
作者 李夏威 张大童 +1 位作者 邱诚 张文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1298-1306,共9页
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ... The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test. 展开更多
关键词 friction stir welding dissimilar butt joint MICROSTRUCTURE mechanical properties
下载PDF
Mechanical properties of monodirectional Gutou mortise-tenon joints of the traditional timber buildings in the Yangtze River region 被引量:6
4
作者 淳庆 韩宜丹 孟哲 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期457-463,共7页
The mechanical properties of the monodirectional Gutou mortise-tenon joints of the ancient Chinese traditional timber buildings in the Yangtze River region were studied using the experimental method. Three monodirecti... The mechanical properties of the monodirectional Gutou mortise-tenon joints of the ancient Chinese traditional timber buildings in the Yangtze River region were studied using the experimental method. Three monodirectional Gutou mortise-tenon joints were designed according to the actual configurations. The failure modes,the hysteretic curves,the skeleton curves, the rotation rigidities, and the energy dissipation capacity of this type of mortise-tenon joints under the low cyclic reversed loading were obtained. The results show that the hysteretic curves of the monodirectional Gutou mortise-tenon joints appear to be Z shape and have obvious pinch effects. During the process of the test,these mortisetenon joints pass orderly through the elastic stage,the yield stage and the failure stage. The energy dissipation capacity of these mortise-tenon joints generally decreases with the increase in the rotation angle. The equivalent viscous damping coefficients of the monodirectional Gutou mortise-tenon joints are between 0. 161 and 0. 193. The results can provide the theoretical base for the computing analysis and repair design of Chinese traditional timber buildings in the Yangtze River region. 展开更多
关键词 traditional timber building monodirectional Gutou mortise-tenon joint mechanical property energy dissipation capacity
下载PDF
Effects of dry-wet cycles on the mechanical properties of sandstone with unloading-induced damage
5
作者 NAN Gan ZHANG Jiaming +2 位作者 LUO Yi WANG Xinlong HU Zhongyi 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3474-3486,共13页
Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as eng... Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as engineering excavations.Furthermore,this degradation is further exacerbated under periodic dry-wet environmental conditions.This study investigated the effects of dry-wet cycles and unloading on the mechanical properties of jointed fine sandstone using uniaxial and triaxial compression tests.These tests were performed on rock samples subjected to varying unloading degrees and different numbers of dry-wet cycles.The results demonstrate that with an increase in the unloading degree from 0%to 70%,there is a corresponding decrease in peak stress ranging from 10%to 33%.Additionally,the cohesion exhibits a reduction of approximately 20%to 25%,while the internal friction angle experiences a decline of about 3.5%to 6%.These findings emphasize a significant unloading effect.Moreover,the degree of peak stress degradation in unloading jointed fine sandstone diminishes with an increase in confining pressure,suggesting that confining pressure mitigates the deterioration caused by dry-wet cycles.Additionally,as the number of dry-wet cycles increases,there is a notable decline in the mechanical properties of the sandstone,evidencing significant dry-wet degradation.Utilizing the Drucker Prager criterion,this study establishes a strength criterion and fracture criterion,denoted as σ_(1)(m,n) and K_(T)^(Ⅱ)(m, n), to quantify the combined impacts of dry-wet cycles and unloading on jointed fine sandstone,which provides a comprehensive understanding of its mechanical behavior under such conditions. 展开更多
关键词 UNLOADING Dry-wet cycle jointed fine sandstone Strength criterion fracture criterion mechanical properties
下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
6
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm BP neural network mechanical clinching joint properties prediction
下载PDF
Microstructure and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints 被引量:17
7
作者 Wei-feng XU Jun MA +1 位作者 Yu-xuan LUO Yue-xiao FANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期160-170,共11页
The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fus... The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material. 展开更多
关键词 laser beam welding TC4/TA15 dissimilar joint MICROSTRUCTURE high-temperature mechanical properties
下载PDF
Microstructure and mechanical properties of dissimilar pinless friction stir spot welded 2A12 aluminum alloy and TC4 titanium alloy joints 被引量:8
8
作者 YANG Xia-wei FENG Wu-yuan +4 位作者 LI Wen-ya CHU Qiang XU Ya-xin MA Tie-jun WANG Wei-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3075-3084,共10页
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c... The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change. 展开更多
关键词 MICROSTRUCTURE mechanical properties friction stir spot welded dissimilar joints
下载PDF
Microstructure and mechanical properties of laser beam welded TC4/TA15 dissimilar joints 被引量:7
9
作者 Wei-feng XU Zhen-lin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3135-3146,共12页
The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of aci... The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates. 展开更多
关键词 laser beam welding titanium alloy dissimilar joint strain rate microstructure mechanical properties
下载PDF
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method 被引量:2
10
作者 Hong-xiang Li Xin-yu Nie +4 位作者 Zan-bing He Kang-ning Zhao Qiang Du Ji-shan Zhang Lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1412-1423,共12页
Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temper... Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment. 展开更多
关键词 INTERFACIAL microstructure INTERFACIAL BONDING mechanism mechanical properties INSERT MOLDING method coherent boundaries Ti/Al jointS
下载PDF
Microstructure and mechanical properties of the welding joint filled with microalloying 5183 aluminum welding wires 被引量:1
11
作者 Zhen Xu Zhi-hao Zhao +2 位作者 Gao-song Wang Chao Zhang Jian-zhong Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期577-582,共6页
In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er... In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%. 展开更多
关键词 aluminum alloys inert gas welding rare earth elements MICROALLOYING jointS microstructure mechanical properties
下载PDF
Texture and mechanical properties of metal inert gas welded 6082-T651 aluminum alloy joints 被引量:2
12
作者 Qi Guangbin Dong Honggang +3 位作者 Yang Jiang Guo Baizheng Hao Xiaohu Xu Chenling 《China Welding》 CAS 2021年第1期1-12,共12页
Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld... Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld seam were characterized by electron backscattered diffraction(EBSD)and electron probe microanalysis(EPMA).The weld seam has typical cube texture({001}<100>)characteristics.The closer to the center of weld seam,the weaker the texture feature,the higher the proportion of high-angle grain boundaries.The average tensile strength of joint was 232 MPa which is up to 72%of 6082 aluminum alloy base metal,and the bending angle for the root bend test sample reached 90°without cracks.The lack of strengthening phase and the existence of welding pores and inclusions in the weld seam caused the degradation of mechanical properties of resultant joint.The microhardness increased from the weld center to the base metal,but the overaging zone caused by welding thermal cycle was softening part of the joint,which had lower hardness than the weld seam. 展开更多
关键词 6082-T651 aluminum alloy butt joint microstructure mechanical property
下载PDF
Evaluation of microstructure and mechanical properties of squeeze overcast Al7075-Cu composite joints 被引量:1
13
作者 Muhammad Waqas Hanif Ahmad Wasim +3 位作者 Muhammad Sajid Salman Hussain Muhammad Jawad Mirza Jahanzaib 《China Foundry》 SCIE CAS CSCD 2023年第1期29-39,共11页
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu... Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties. 展开更多
关键词 squeeze overcast joints Al7075-Cu composite joints mechanical properties gray relational analysis Taguchi method
下载PDF
The study of measuring technology on the dynamic mechanical properties of welded joint with high strainrate 被引量:1
14
作者 巩水利 张建勋 +1 位作者 裴怡 于琴 《China Welding》 EI CAS 2000年第1期30-37,共8页
In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dy... In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint. 展开更多
关键词 welded joint dynamic mechanical properties measuring technology
下载PDF
Mechanical properties of QFP micro-joints soldered with lead-free solders using diode laser soldering technology 被引量:5
15
作者 韩宗杰 薛松柏 +4 位作者 王俭辛 张昕 张亮 禹胜林 王慧 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第4期814-818,共5页
Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not onl... Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not only with Sn-Pb eutectic solders but also with infrared reflow soldering method. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed laser soldering time, an optimal power exists, while the optimal mechanical properties of QFP micro-joints are gained. Mechanical properties of QFP micro-joints soldered with laser soldering system are better than those of QFP micro-joints soldered with IR reflow soldering method. Fracture morphologies of QFP micro-joints soldered with laser soldering system exhibit the characteristic of tough fracture, and homogeneous and fine dimples appear under the optimal laser output power. 展开更多
关键词 无铅焊料 二极管激光软钎焊 微观结构 机械性能
下载PDF
Applicability of unique scarf joint configuration in friction stir welding of AA6061-T6:Analysis of torque,force,microstructure and mechanical properties
16
作者 Durjyodhan Sethi Uttam Acharya +1 位作者 Shashank Shekhar Barnik Saha Roy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期567-582,共16页
The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two disti... The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost. 展开更多
关键词 Friction stir welding joint configuration Al alloys Force and torque Microstructure mechanical property
下载PDF
Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD+Z lap joint
17
作者 邓建峰 郭伟强 +4 位作者 徐晓霞 王博 灰辉 窦思忠 黄望业 《China Welding》 CAS 2023年第1期46-52,共7页
The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir we... The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode. 展开更多
关键词 LIGHTWEIGHT aluminum/steel lap joint friction stir welding interfacial microstructure mechanical property
下载PDF
Micro-mechanical properties of 2219 welded joints with twin wire welding
18
作者 徐文立 李庆芬 +2 位作者 孟庆国 方洪渊 高娜 《China Welding》 EI CAS 2006年第3期24-28,共5页
Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint str... Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy. 展开更多
关键词 twin wire welding nanoindentation method micro-mechanical properties joint strengthening
下载PDF
Preparation, mechanical properties and wear behaviors of novel aluminum bronze for dies 被引量:16
19
作者 李文生 王智平 +2 位作者 路阳 高勇 徐建林 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期607-612,共6页
A modified single melt technique involving joint charging was developed for preparation of aluminum bronze, Cu-14%Al-X(mass fraction) alloy, which could be used as die materials. The mechanical properties and wear beh... A modified single melt technique involving joint charging was developed for preparation of aluminum bronze, Cu-14%Al-X(mass fraction) alloy, which could be used as die materials. The mechanical properties and wear behavior of the developed alloy under boundary-lubrication conditions was investigated. The results demonstrate that all the phases disperse homogeneously in the bronze matrix with a significant amount of discrete and spherical brittle and hard γ2 phase, moreover, the dispersed κ phase are the dominant factor that improves the anti-deformation properties of the soft matrix, after a solution treatment at 920 ℃ for 2 h and followed by aging at 580 ℃ for 3 h, thus remarkably improves the mechanical properties and wear resistance of the developed alloy. The Cu-14%Al-X alloy can be used as materials for static precise stretching and squeezing dies. 展开更多
关键词 铝青铜 热处理 磨损 机械性能 制备
下载PDF
Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels
20
作者 A.R.Sufizadeh S.A.A.Akbari Mousavi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期538-549,共12页
This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and he... This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and heat affected zones (HAZs) were investigated. Austenitic microstructures were observed in all of the samples. The sizes of the HAZs changed when the heat input was varied, and the 316L sides exhibited a larger HAZ. The cooling rates were calculated by measuring the solidification dendrite arm spacing. It is shown that high cooling rates lead to an austenitic microstructure. Tensile tests were carried out, and the results revealed the tensile properties of both the base metals and the weldments. The hardness test results agreed well with the tensile test results. 展开更多
关键词 stainless steel laser welding welded joints microstructure mechanical properties cooling rate
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部