期刊文献+
共找到1,556篇文章
< 1 2 78 >
每页显示 20 50 100
Dynamic shear modulus of undisturbed soil under different consolidation ratios and its effects on surface ground motion 被引量:8
1
作者 Sun Jing Gong Maosheng Tao Xiaxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期561-568,共8页
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat... The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase. 展开更多
关键词 dynamic shear modulus consolidation ratio undisturbed soil resonant column test surface ground motion
下载PDF
Measurement of Young's Modulus and Poisson's Ratio of Thermal Barrier Coatings 被引量:5
2
作者 齐红宇 周立柱 杨晓光 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第2期180-184,共5页
In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond streng... In gas turbines, thermal barrier coatings (TBCs) applied by air plasma spraying are widely used to lower the temperature of hot components. To analyze the characteristics of TBCs such as residual stress, bond strength, fracture toughness, and crack propagation ratio, the Young's modulus and Poisson's ratio are important parameters. For TBC is a brittle and thin film, it is desirable to evaluate those properties while the coatings are bonded to a substrate. An atmospheric plasma spray MCrAIY bond coat and Yttria stabilized zirconia (YSZ) top coat are deposited onto a nickel-base superalloy GH150 substrate. The Young's modulus and Poisson's ratio are measured by cantilever beam bending with NDI. The method will be developed to test the Young' s modulus and Poisson ratio of other multilayer systems. 展开更多
关键词 thermal barrier coatings cantilever beam Young' s modulus Poisson' s ratio
下载PDF
Shear modulus and damping ratio of sand-granulated rubber mixtures 被引量:11
3
作者 M.Ehsani N.Shariatmadari S.M.Mirhosseini 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3159-3167,共9页
Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping chara... Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice. 展开更多
关键词 sand-rubber mixture shear modulus damping ratio low to high shear strain amplitude cyclic triaxial test torsionalresonant column test granular rubber
下载PDF
Dynamic shear modulus and damping ratio characteristics of undisturbed marine soils in the Bohai Sea,China 被引量:6
4
作者 Zhang Yan Zhao Kai +1 位作者 Peng Yanjv Chen Guoxing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期297-312,共16页
This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the ... This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data. 展开更多
关键词 Bohai Sea marine sediments dynamic shear modulus damping ratio sedimentary facies
下载PDF
Influence of repeated freeze-thaw on dynamic modulus and damping ratio properties of silty sand 被引量:3
5
作者 TianLiang Wang Chao Ma +1 位作者 Han Yan JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2013年第5期572-576,共5页
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm... Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level. 展开更多
关键词 freeze-thaw cycles silty sand dynamic modulus damping ratio
下载PDF
Effect of consolidation ratios on maximum dynamic shear modulus of sands 被引量:1
6
作者 袁晓铭 孙静 孙锐 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期59-68,共10页
The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation rat... The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula. 展开更多
关键词 consolidation ratio maximum dynamic shear modulus increment formula SANDS
下载PDF
Analysis of the elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus 被引量:1
7
作者 孙渊 王庆明 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第3期178-182,共5页
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying... The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data. 展开更多
关键词 elastic-plastic indentation properties ratio of hardness to Young’s modulus finite element analysis experimental study
下载PDF
Analytical Algorithms for the Blend Ratios by Fibre-bundle Tensile Curves Part Ⅱ: Calculations of the Modulus Method and the Percentage Method 被引量:1
8
作者 于伟东 Ron Postle 严灏景 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期12-19,共8页
The principles for the modulus method and the percentage method are established and discussed in the part following Part Ⅰ of the series papers, in which we proposed the various algorithms of the strength method and ... The principles for the modulus method and the percentage method are established and discussed in the part following Part Ⅰ of the series papers, in which we proposed the various algorithms of the strength method and the work method. The samples of Wool/PET blended fibre bundles, the method of fibre-bundle tensile tests and the typical specific stress-extension curves from the fibre bundles with different blend ratios are the same as in Part Ⅰ. It can be found that the theoretical results estimated by the modulus and percentage methods accord with the experimental values highly though the calculations of the two methods are slightly more complex than those of the strength and work methods. Especially, using the modulus method can not only avoid the influence of the error caused by the determination of the tensile curve of no fibre breaking in stretching, Y(e), but also need not to know the tensile curves of mono-component fibre bundles in certain calculation. The latter advantage of the modulus method exists in the percentage method too, but it should adopt the improved calculation of ones. 展开更多
关键词 fibre bundle blend ratio tensile curve WOOL PET fibre modulus.
下载PDF
Self-adapting extraction of matrix mineral bulk modulus and verification of fluid substitution 被引量:5
9
作者 林凯 熊晓军 +4 位作者 杨晓 贺振华 曹俊兴 张玺华 王萍 《Applied Geophysics》 SCIE CSCD 2011年第2期110-116,176,共8页
Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction r... Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable. 展开更多
关键词 Self-adapting matrix mineral bulk modulus fluid substitution dry rock Poisson's ratio
下载PDF
ELASTIC MODULUS REDUCTION METHOD FOR LIMIT LOAD EVALUATION OF FRAME STRUCTURES 被引量:20
10
作者 Lufeng Yang Bo Yu Yongping Qiao 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期109-115,共7页
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR... A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method. 展开更多
关键词 limit load element bearing ratio degree of uniformity elastic modulus reduction method
下载PDF
Pile-soil stress ratio in bidirectionally reinforced composite ground by considering soil arching effect 被引量:1
11
作者 邹新军 杨眉 +1 位作者 赵明华 杨小礼 《Journal of Central South University》 SCIE EI CAS 2008年第S2期1-7,共7页
To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior a... To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ. 展开更多
关键词 composite ground PILE geosynthetic-reinforced CUSHION soil ARCHING effect pile-soil stress ratio
下载PDF
Experimental study on the dynamic modulus of compacted loess under bidirectional dynamic load 被引量:1
12
作者 Liguo Yang Shengjun Shao +1 位作者 Qilong Sun Ping Wang 《Earthquake Research Advances》 CSCD 2022年第3期58-66,共9页
The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic m... The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China,where earthquakes frequently occur.To study the change in the dynamic modulus of the foundation soil under the combined action of vertical and horizontal earthquakes,a hollow cy-lindrical torsion shear instrument capable of vibrating in four directions was used to perform two-way coupling of compression and torsion of Xi'an compacted loess under different dry density and deviator stress ratios.The results show that increasing the dry density can improve the initial dynamic compression modulus and initial dynamic shear modulus of compacted loess.With an increase in the deviator stress ratio,the initial dynamic compression modulus increases,to a certain extent,but the initial dynamic shear modulus decreases slightly.The dynamic modulus gradually decreases with the development of dynamic strain and tends to be stable,and the dynamic modulus that reaches the same strain increases with an increasing dry density.At the initial stage of dynamic loading,the attenuation of the dynamic shear modulus with the strain development is faster than that of the dynamic compression modulus.Compared with previous research results,it is determined that the dynamic modulus of loess under bidirectional dynamic loading is lower and the attenuation rate is faster than that under single-direction dynamic loading.The deviator stress ratio has a more obvious effect on the dynamic compression modulus.The increase in the deviator stress ratio can increase the dynamic compression modulus,to a certain extent.However,the deviator stress ratio has almost no effect on the dynamic shear modulus,and can therefore be ignored. 展开更多
关键词 Bidirectional dynamic load Compacted loess Dynamic modulus Dry density Deviator stress ratio Ground treatment
下载PDF
Elastic Modulus Prediction of Three-dimension-4 Directional Braided C_f/SiC Composite Based on Double-scale Model
13
作者 牛序铭 SUN Zhigang +1 位作者 KONG Chunyuan 宋迎东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期500-508,共9页
Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/poro... Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller. 展开更多
关键词 3D-4d braided C/SiC composites double-scale model elastic modulus energy methodstiffness and compliance-averaging method porosity ratio
下载PDF
Dynamic Flexural Modulus and Low-Velocity Impact Response of Supercomposite<sup>TM</sup>Laminates with Vertical Z-Axis Milled Carbon Fiber Reinforcement
14
作者 Suman Babu Ukyam Raju P. Mantena +2 位作者 Damian L. Stoddard Arunachalam M. Rajendran Robert D. Moser 《Materials Sciences and Applications》 2021年第4期152-170,共19页
<span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement con... <span style="font-family:Verdana;">In work reported here, the dynamic properties and low-velocity impact response of woven carbon/epoxy laminates incorporating a novel 3D interlaminar reinforcement concept with dense layers of Z-axis oriented milled carbon fiber Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> prepregs, are presented. Impulse-frequency response vibration technique is used for non-destructive evaluation of the dynamic flexural modulus (stiffness) and loss factor (intrinsic damping) of woven carbon/epoxy control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates. Low-velocity punch-shear tests were performed on control and Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates according to ASTM D3763 Standard using a drop-weight impact test system. Control panels had all layers of 3K plain woven carbon/epoxy prepregs, with a dense interlaminar reinforcement of milled carbon fibers in Z-</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">direction used in designing the Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminate—both having same areal density. Impulse-frequency response vibration experiments show that with a 50% replacement of woven carbon fabric in control panel with milled carbon fibers in Z direction dynamic flexural modulus reduced 25%</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30% (loss in stiffness) and damping increased by about the same 25%</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30%. Low-velocity punch-shear tests demonstrated about</span><span style="font-family:;" "=""> </span><span><span style="font-family:Verdana;">25% reduction in energy absorption for Supercomposite</span><sup><span style="font-family:Verdana;">TM</span></sup><span style="font-family:Verdana;"> laminates with the replacement of 50% woven carbon fabric in control panel.</span></span> 展开更多
关键词 SupercompositeTM Damping ratio Dynamic Flexural modulus Milled Carbon Fibers Low-Velocity Punch-Shear
下载PDF
单双向循环荷载作用下砂砾料动模量和阻尼比试验研究 被引量:1
15
作者 何建新 王景 +2 位作者 杨海华 刘亮 杨志豪 《振动工程学报》 EI CSCD 北大核心 2024年第6期1055-1063,共9页
通过大型振动三轴试验,研究了单双向循环荷载作用下砂砾料动弹性模量和阻尼比的变化规律,分析围压和径向循环动应力对砂砾料动力参数的影响。研究结果表明:在双向振动三轴试验中,砂砾料的轴向动应变受径向动应力的影响较小,动应变主要... 通过大型振动三轴试验,研究了单双向循环荷载作用下砂砾料动弹性模量和阻尼比的变化规律,分析围压和径向循环动应力对砂砾料动力参数的影响。研究结果表明:在双向振动三轴试验中,砂砾料的轴向动应变受径向动应力的影响较小,动应变主要与施加的轴向动应力大小有关;单双向振动下砂砾料的动弹性模量均随着动应变的增大而逐渐降低,双向振动时砂砾料动弹性模量随动应变的衰减速率基本不变,在相同动应变下双向振动的动模量均低于单向振动;砂砾料在双向振动时的阻尼比大于单向振动,双向振动时消耗的动应变能更大。通过对两种试验条件下的最大动弹性模量、动模量比进行分析,建立了表述单双向试验条件下最大动弹性模量的换算关系式和双向振动试验中动模量比和动应变的修正模型。 展开更多
关键词 砂砾料 动三轴试验 动弹性模量 阻尼比 双向振动 径向动应力
下载PDF
岩心力学实验刻度弹性参数的页岩脆性评价方法改进
16
作者 王团 赵海波 +3 位作者 郑建东 乔卫 唐晓花 田得光 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第5期35-42,共8页
页岩储层的规模动用关键在于水力压裂造缝,复杂缝网形成的地质因素取决于天然裂缝、水平应力差及脆性,高脆性是压裂形成缝网的必要条件之一。针对现有弹性参数脆性指数评价方法中杨氏模量和泊松比权重系数占比不清的问题,在岩心三轴力... 页岩储层的规模动用关键在于水力压裂造缝,复杂缝网形成的地质因素取决于天然裂缝、水平应力差及脆性,高脆性是压裂形成缝网的必要条件之一。针对现有弹性参数脆性指数评价方法中杨氏模量和泊松比权重系数占比不清的问题,在岩心三轴力学测试和全岩样品分析的基础上,提出基于应力-应变曲线的脆性评价指标,通过统计交会分析,明确杨氏模量和泊松比对岩石脆性敏感程度,并且根据脆性评价指标和杨氏模量及泊松比的相关系数,采用等比例方式进一步刻度杨氏模量和泊松比的权重系数,改进了现有的弹性参数脆性指数评价方法。东部盆地页岩层系应用实例表明,岩心力学实验刻度后的弹性参数脆性评价方法更加合理有效,能更好地反映页岩储层脆性分布特征。 展开更多
关键词 页岩脆性评价 力学测试 弹性参数 杨氏模量 泊松比
下载PDF
颗粒表面粗糙度对材料小应变动力特性的影响
17
作者 张涛 吴健 +1 位作者 魏骁 杨仲轩 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第8期1783-1790,共8页
土体的小应变剪切模量和阻尼比是表征土体动力学特性的重要参数,不仅受到土体密实度和应力状态的影响,还受到土体颗粒级配、形状等颗粒特征的影响。颗粒表面粗糙度是重要的土体颗粒特征之一,然而关于颗粒表面粗糙度对土体小应变动力特... 土体的小应变剪切模量和阻尼比是表征土体动力学特性的重要参数,不仅受到土体密实度和应力状态的影响,还受到土体颗粒级配、形状等颗粒特征的影响。颗粒表面粗糙度是重要的土体颗粒特征之一,然而关于颗粒表面粗糙度对土体小应变动力特性影响的研究较为匮乏。利用能量注入式虚拟质量共振柱设备,系统地测试了颗粒表面粗糙度不同的玻璃珠所成试样的小应变剪切模量和阻尼比;采用三维干涉显微镜测量了玻璃珠的表面粗糙度,并量化表征粗糙度对试样小应变剪切模量和阻尼比的影响。试验结果表明,在相同孔隙比和有效应力条件下,试样的小应变剪切模量随颗粒表面粗糙度增大而减小,而小应变阻尼比受颗粒表面粗糙度影响的规律不明显。研究结果表明,当材料的颗粒形状、级配等因素相近时,颗粒表面粗糙度对材料小应变剪切模量的影响不应被忽略。 展开更多
关键词 表面粗糙度 颗粒材料 小应变 剪切模量 阻尼比
下载PDF
橡胶混合黏土小应变剪切模量特性试验研究
18
作者 周恩全 白宇航 +2 位作者 姚缘 王龙 陆建飞 《岩土力学》 EI CAS CSCD 北大核心 2024年第3期705-713,共9页
为了研究橡胶混合黏土(混合土)的动变形特性,对不同橡胶掺量、橡胶粒径和围压的混合土开展共振柱试验,分析动剪切模量G和阻尼比λ的发展规律,并基于二元介质模型,提出了表达混合土接触状态的骨架孔隙比e_(sk)计算方法,进一步依托骨架孔... 为了研究橡胶混合黏土(混合土)的动变形特性,对不同橡胶掺量、橡胶粒径和围压的混合土开展共振柱试验,分析动剪切模量G和阻尼比λ的发展规律,并基于二元介质模型,提出了表达混合土接触状态的骨架孔隙比e_(sk)计算方法,进一步依托骨架孔隙比e_(sk)对混合土的最大动剪切模量G_(max)进行评价。结果表明:掺入橡胶颗粒后,混合土的G减小,λ增大,且橡胶掺量增大时,混合土的G减小、λ增大;围压增大时,混合土的G增大、λ减小;橡胶粒径增大时,混合土的G增大、λ减小。随着橡胶掺量增大,骨架孔隙比e_(sk)增大,G_(max)降低;在相同橡胶掺量时,随着橡胶粒径的增大,e_(sk)增大,G_(max)升高。在Hardin公式的基础上,基于骨架孔隙比e_(sk)提出了考虑橡胶掺量和橡胶粒径的G_(max)表征模型,该模型具有较好的准确性,可为评价橡胶混合黏土G_(max)提供依据。 展开更多
关键词 橡胶混合黏土 动剪切模量 阻尼比 骨架孔隙比 Hardin模型
下载PDF
雄安新区粉质黏土的动力特性试验研究
19
作者 马丽娜 石磊 +2 位作者 杨斌 徐红星 张戎令 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期24-31,共8页
为分析雄安新区粉质黏土的动力特性,采用GDS多功能动态循环三轴试验系统,对雄安新区粉质黏土进行14种工况(不同围压、固结比和加载频率)下的动三轴试验,深入分析了动骨干曲线、动弹性模量、动剪切模量、阻尼比等在不同工况下的变化规律... 为分析雄安新区粉质黏土的动力特性,采用GDS多功能动态循环三轴试验系统,对雄安新区粉质黏土进行14种工况(不同围压、固结比和加载频率)下的动三轴试验,深入分析了动骨干曲线、动弹性模量、动剪切模量、阻尼比等在不同工况下的变化规律及相关参数。试验结果表明:随动应力幅值的增大,动应变呈非线性增长,且存在某一临界动应力值;随动应变的增大,动模量逐渐减小,且减小速率先快后慢、最后趋于稳定;随动剪应变增长,阻尼比呈非线性增长,且阻尼比最大值不超过0.12;随围压与固结比增大,动强度和动模量均明显增大;围压与固结比对阻尼比影响较小,具有归一性特征;随频率增大,动应力幅值、动弹性模量增大,但增长幅度并不明显。综合分析三变量对雄安新区粉质黏土动力特性的影响程度得出:围压影响最大、固结比次之、加载频率最小。 展开更多
关键词 岩土工程 粉质黏土 动三轴试验 动弹性模量 动剪切模量 阻尼比
下载PDF
基于超大型三轴仪的堆石料动力特性缩尺效应研究
20
作者 邹德高 宁凡伟 +2 位作者 刘京茂 崔更尧 孔宪京 《水利学报》 EI CSCD 北大核心 2024年第5期528-536,共9页
堆石料的缩尺效应是导致高土石坝变形预测不准的重要因素之一,目前针对堆石料静力缩尺效应的影响已有部分研究,但针对堆石料动力变形特性的缩尺效应研究仍十分鲜见。本文对两河口板岩及古水玄武岩开展了超大型(试样直径800 mm,最大粒径... 堆石料的缩尺效应是导致高土石坝变形预测不准的重要因素之一,目前针对堆石料静力缩尺效应的影响已有部分研究,但针对堆石料动力变形特性的缩尺效应研究仍十分鲜见。本文对两河口板岩及古水玄武岩开展了超大型(试样直径800 mm,最大粒径为160 mm)和常规大型三轴(试样直径300 mm,最大粒径为60 mm)动剪切模量和阻尼比试验,研究了平行相似级配条件下最大粒径对最大动剪切模量、动剪切模量比、阻尼比以及沈珠江等效线性模型参数的影响。试验结果表明:①超大型三轴试验的最大动剪切模量大于常规大型三轴试验,随着动剪应变的增大,超大型和常规大型三轴试验的最大动剪切模量差别逐渐减小;②超大型三轴试验的动剪切模量比G_(d)/G_(dmax)小于常规大型三轴试验,即超大型三轴试验的动剪模量比衰减得更快;③超大型三轴试验的阻尼比大于常规大型三轴试验,随着动剪应变的增加,二者的差距逐渐增大;④超大型三轴试验得到的沈珠江等效线性模型参数k_(2)、k_(1)以及λ_(max)分别是常规大型三轴试验的1.14~1.32倍、1.26~1.31倍以及1.31~1.44倍,超大型和常规大型三轴试验得到的模量指数n差别不大。本文研究成果可为同类工程动力响应分析提供更加合理的试验与数值计算依据。 展开更多
关键词 堆石料 超大型三轴 缩尺效应 动剪切模量 阻尼比
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部