A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating...A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.展开更多
Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of an...Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of anchorage segment was analyzed. Shear stress?strain relationship of soil surrounding anchorage body was simplified into three-folding-lines model consisting of elastic phase, elasto-plastic phase and residual phase considering its softening characteristic. Meanwhile, shear displacement method that has been extensively used in the analysis of pile foundation was introduced. Based on elasto-plastic theory, the distributions of displacement, shear stress and axial force along the anchorage segment of tension type anchor were obtained, and the formula for calculating the elastic limit load was also developed accordingly. Finally, an example was given to discuss the variation of stress and displacement in the anchorage segment with the loads exerted on the anchor, and a program was worked out to calculate the anchor maximum bearing capacity. The influence of some parameters on the anchor bearing capacity was discussed, and effective anchorage length was obtained simultaneously. The results show that the shear stress first increases and then decreases and finally trends to the residual strength with increase of distance from bottom of the anchorage body, the displacement increases all the time with the increase of distance from bottom of the anchorage body, and the increase of velocity gradually becomes greater.展开更多
In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be imp...In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be improved by fully grouted rock bolt, offering properties optimal to the purpose and versatility in use. Investigations of load transfer between the bolt and grout indicate that the bolt profile shape and spacing play an important role in improving the shear strength between the bolt and the surrounding strata. This study proposes a new analytical solution for calculation displacement and shear stress in a fully encapsulated rock bolt in jointed rocks. The main characteristics of the analytical solution consider the bolt profile and jump plane under pull test conditions. The performance of the proposed analytical solution, for three types of different bolt profile configurations, is validated by ANSYS software. The results show there is a good agreement between analytical and numerical methods. Studies indicate that the rate of displacement and shear stress from the bolt to the rock exponentially decayed. This exponential reduction in displacement and shear stress are dependent on the bolt characteristics such as: rib height, rib spacing, rib width and grout thickness, material and joint properties.展开更多
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between...Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.展开更多
A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics...A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics of flexible piles and the surrounding soil. It was found that piles deformed elastically under reservoir operation, and the soil in front of piles was gradually separated from piles. The movement of the pile heads exceeded that of the soil between and behind piles. This phenomenon was further studied by a large-scale physical model test to gain insights into the pile-soil interaction. The displacement relationship between pile heads and the surrounding soil is in good agreement with the field data. The physical model test shows that the deformation process of pile-reinforced landslides can be divided into two stages: firstly, when the piles head movement exceeds soil movement, the soil arching is mainly affected by the deflection of the piles, the arches between and behind piles bent upwards;but when the soil movement exceeds piles head movement, the arches near the upslope and downslope bent downwards and upwards, respectively. Furthermore, the different deformation of two adjacent piles and the pile stiffness influenced the arch’s shape and formation;the flexible piles exhibit great coordinated deformation with the landslide, and caused the soil arch on the downslope.展开更多
This study experimentally analyzes the nonlinear flow characteristics and channelization of fluid through rough-walled fractures during the shear process using a shear-flow-visualization apparatus.A series of fluid fl...This study experimentally analyzes the nonlinear flow characteristics and channelization of fluid through rough-walled fractures during the shear process using a shear-flow-visualization apparatus.A series of fluid flow and visualization tests is performed on four transparent fracture specimens with various shear displacements of 1 mm,3 mm,5 mm,7 mm and 10 mm under a normal stress of 0.5 MPa.Four granite fractures with different roughnesses are selected and quantified using variogram fractal dimensions.The obtained results show that the critical Reynolds number tends to increase with increasing shear displacement but decrease with increasing roughness of fracture surface.The flow paths are more tortuous at the beginning of shear because of the wide distribution of small contact spots.As the shear displacement continues to increase,preferential flow paths are more distinctly observed due to the decrease in the number of contact spots caused by shear dilation;yet the area of single contacts in-creases.Based on the experimental results,an empirical mathematical equation is proposed to quantify the critical Reynolds number using the contact area ratio and fractal dimension.展开更多
A fractal model governing saw-tooth fractures was first introduced to replicate sandstone samples containing an inclined 3D penetrating rough fracture surface with various joint roughness coefficients(JRC).In conventi...A fractal model governing saw-tooth fractures was first introduced to replicate sandstone samples containing an inclined 3D penetrating rough fracture surface with various joint roughness coefficients(JRC).In conventional triaxial compression,the peak strength for fractured samples increased with both confining pressure and JRC.During the unloading confining pressure process,the normal stress of fractures declined but the shear stress increased,resulting in shear sliding of fractures.The shear displacement of fractures exponentially increased,and the positive normal displacement decreased gradually to negative values under coupling effects of shear contraction caused by normal stress and shear dilation due to climbing effects of fractures.Transition from quasi-static to dynamic sliding of the fractures was identified.The sliding resistance duration increased with confining pressure but decreased with JRC.After prepeak unloading,the fracture surfaces presented a more significant surface wear response and JRC values decreased by 1.70%–59.20%due to more remarkable asperity degradation compared with those after conventional triaxial compression.The theoretical model for shear strength of fractures was established through improving the Ladanyi&Archambault model by introducing the relations between normal stress and surface wear ratios of fractures,which agreed well with the experimental results.展开更多
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting...Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting in the faceplate and shear stress acting in the honeycomb-core and warping displacement were deduced. Numerical analysis shows the normal stress attenuates quickly along x-axis. Normal stress acting on the cross section at a distance of 20 h from the fixed end is only one per cent of that acting on the fixed end.展开更多
When subjected to shear loading condition,a steel rock bolt will become bent in the field close to the loading point in situ.The bolt is deformed as the joint displacement increases,which can mobilize a normal load an...When subjected to shear loading condition,a steel rock bolt will become bent in the field close to the loading point in situ.The bolt is deformed as the joint displacement increases,which can mobilize a normal load and a shear load on the bolt accordingly.In this work,the relationship analysis between the displacing angle and loading angle is carried out.By considering elastic andplastic states of rock bolt during shearing,the rotation of bolt extremity can be calculated analytically.Thus,the loading angle isobtained from displacing angle.The verification of analytical results and laboratory results from reference research implies that theanalytical method is correct and working.In terms of in-situ condition,the direction of the load acting on steel bolt can be predictedwell according to the direction of the deformed rock bolt with respect to original bolt axis.展开更多
Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls,...Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System). In this study, finite element based software, ETABS, was used to generate and analyse three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Three models were used, one each for the three resisting systems. Each model consisted of three samples representing three different building heights of 45 m, 75 m, and 99 m. Wind Design Spreadsheet complying with the appropriate British Standards was used to compute preliminary wind load coefficients using the wind speed values from the relevant wind isopleth map of Nigeria as primary data. Lateral wind load was then applied at floor levels of each of the building samples. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements of storey tops and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.展开更多
A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been...A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear correction factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rapidly convergent and to capture warping effects for composites, higher order displacement terms in the displacement kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deformation has also been considered in the formulation by taking into account shear strains ( rxz and ryz) as nodal unknowns. The element is very simple to formulate and could be coded up in research software. A small Fortran code has been developed to implement the element and various examples of isotropic and composite plates have been analyzed to show the effectiveness of the element.展开更多
The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel ...The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel plate-clay interface shear te sts were performed under the constant normal load(CNL)condition to inve stigate the effects of normal stre ss,cyclic amplitude,and number of cycles on a steel plate-clay interface using the GDS multi-function interface shear tester.Based on the experimental results,in monotonic shear tests,change of shear stress took place in the specimen,the shear stress rapidly reached the peak value at shear displacement of 1 mm,and then abruptly decreased to the residual value.In cyclic shear te sts,accumulated displacement was a better parameter to describe the soil degradation characteristics,and the degradation degree of shear stress became greater with the increasing of normal stress and accumulated displacement.Shear stress in post-cyclic monotonic shear tests did not generate a peak value and was lower than that in monotonic shear tests under the same normal stress.The soil was completely disturbed and reached the residual strength when the cumulative displacement approached 6 m.An empirical equation to evaluate shear stress degradation mechanism was formulated and the procedure of parameter identification was presented.展开更多
基金Projects(52174092,51904290)supported by the National Natural Science Foundation,ChinaProject(BK20220157)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(232102321009)supported by Henan Province Science and Technology Key Project,ChinaProject(2022YCPY0202)supported by Fundamental Research Funds for the Central Universities,China。
文摘A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.
基金Project(20050532021) supported by the Research Fund for the Doctoral Program of Higher Education
文摘Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of anchorage segment was analyzed. Shear stress?strain relationship of soil surrounding anchorage body was simplified into three-folding-lines model consisting of elastic phase, elasto-plastic phase and residual phase considering its softening characteristic. Meanwhile, shear displacement method that has been extensively used in the analysis of pile foundation was introduced. Based on elasto-plastic theory, the distributions of displacement, shear stress and axial force along the anchorage segment of tension type anchor were obtained, and the formula for calculating the elastic limit load was also developed accordingly. Finally, an example was given to discuss the variation of stress and displacement in the anchorage segment with the loads exerted on the anchor, and a program was worked out to calculate the anchor maximum bearing capacity. The influence of some parameters on the anchor bearing capacity was discussed, and effective anchorage length was obtained simultaneously. The results show that the shear stress first increases and then decreases and finally trends to the residual strength with increase of distance from bottom of the anchorage body, the displacement increases all the time with the increase of distance from bottom of the anchorage body, and the increase of velocity gradually becomes greater.
文摘In presence of difficult conditions in coal mining roadways, an adequate stabilization of the excavation boundary is required to ensure a safe progress of the construction. The stabilization of the roadways can be improved by fully grouted rock bolt, offering properties optimal to the purpose and versatility in use. Investigations of load transfer between the bolt and grout indicate that the bolt profile shape and spacing play an important role in improving the shear strength between the bolt and the surrounding strata. This study proposes a new analytical solution for calculation displacement and shear stress in a fully encapsulated rock bolt in jointed rocks. The main characteristics of the analytical solution consider the bolt profile and jump plane under pull test conditions. The performance of the proposed analytical solution, for three types of different bolt profile configurations, is validated by ANSYS software. The results show there is a good agreement between analytical and numerical methods. Studies indicate that the rate of displacement and shear stress from the bolt to the rock exponentially decayed. This exponential reduction in displacement and shear stress are dependent on the bolt characteristics such as: rib height, rib spacing, rib width and grout thickness, material and joint properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022)。
文摘Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
基金the Key Program of National Natural Science Foundation of China(No.41630643)the National Key Research and Development Program of China(No.2017YFC1501302)+2 种基金the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGCJ1701,1810491A26)the China Postdoctoral Science Foundation(No.2018M642952)the Postdoctoral International Exchange Program.
文摘A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics of flexible piles and the surrounding soil. It was found that piles deformed elastically under reservoir operation, and the soil in front of piles was gradually separated from piles. The movement of the pile heads exceeded that of the soil between and behind piles. This phenomenon was further studied by a large-scale physical model test to gain insights into the pile-soil interaction. The displacement relationship between pile heads and the surrounding soil is in good agreement with the field data. The physical model test shows that the deformation process of pile-reinforced landslides can be divided into two stages: firstly, when the piles head movement exceeds soil movement, the soil arching is mainly affected by the deflection of the piles, the arches between and behind piles bent upwards;but when the soil movement exceeds piles head movement, the arches near the upslope and downslope bent downwards and upwards, respectively. Furthermore, the different deformation of two adjacent piles and the pile stiffness influenced the arch’s shape and formation;the flexible piles exhibit great coordinated deformation with the landslide, and caused the soil arch on the downslope.
基金This study has been partially funded by National Key Research and Development Program of China(Grant No.2020YFA0711800)the National Natural Science Foundation of China(Grant No.51979272)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QE069).
文摘This study experimentally analyzes the nonlinear flow characteristics and channelization of fluid through rough-walled fractures during the shear process using a shear-flow-visualization apparatus.A series of fluid flow and visualization tests is performed on four transparent fracture specimens with various shear displacements of 1 mm,3 mm,5 mm,7 mm and 10 mm under a normal stress of 0.5 MPa.Four granite fractures with different roughnesses are selected and quantified using variogram fractal dimensions.The obtained results show that the critical Reynolds number tends to increase with increasing shear displacement but decrease with increasing roughness of fracture surface.The flow paths are more tortuous at the beginning of shear because of the wide distribution of small contact spots.As the shear displacement continues to increase,preferential flow paths are more distinctly observed due to the decrease in the number of contact spots caused by shear dilation;yet the area of single contacts in-creases.Based on the experimental results,an empirical mathematical equation is proposed to quantify the critical Reynolds number using the contact area ratio and fractal dimension.
基金The financial support from the National Natural Science Foundation of China(Nos.52174092,51904290,52004272,and 52274145)Natural Science Foundation of Jiangsu Province,China(Nos.BK20220157 and BK20200660)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)Xuzhou Science and Technology Project,China(Nos.KC21033 and KC22005)Yunlong Lake Laboratory of Deep Underground Science and Engineering Project,China(No.104023002)。
文摘A fractal model governing saw-tooth fractures was first introduced to replicate sandstone samples containing an inclined 3D penetrating rough fracture surface with various joint roughness coefficients(JRC).In conventional triaxial compression,the peak strength for fractured samples increased with both confining pressure and JRC.During the unloading confining pressure process,the normal stress of fractures declined but the shear stress increased,resulting in shear sliding of fractures.The shear displacement of fractures exponentially increased,and the positive normal displacement decreased gradually to negative values under coupling effects of shear contraction caused by normal stress and shear dilation due to climbing effects of fractures.Transition from quasi-static to dynamic sliding of the fractures was identified.The sliding resistance duration increased with confining pressure but decreased with JRC.After prepeak unloading,the fracture surfaces presented a more significant surface wear response and JRC values decreased by 1.70%–59.20%due to more remarkable asperity degradation compared with those after conventional triaxial compression.The theoretical model for shear strength of fractures was established through improving the Ladanyi&Archambault model by introducing the relations between normal stress and surface wear ratios of fractures,which agreed well with the experimental results.
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
文摘Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting in the faceplate and shear stress acting in the honeycomb-core and warping displacement were deduced. Numerical analysis shows the normal stress attenuates quickly along x-axis. Normal stress acting on the cross section at a distance of 20 h from the fixed end is only one per cent of that acting on the fixed end.
基金Projects(51604299,51274249,51474252)supported by the National Natural Science Foundation of ChinaProject(2016YFC0600706)supported by the State Key Research Development Program of China+4 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016M600636)supported by China Postdoctoral Science FoundationProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘When subjected to shear loading condition,a steel rock bolt will become bent in the field close to the loading point in situ.The bolt is deformed as the joint displacement increases,which can mobilize a normal load and a shear load on the bolt accordingly.In this work,the relationship analysis between the displacing angle and loading angle is carried out.By considering elastic andplastic states of rock bolt during shearing,the rotation of bolt extremity can be calculated analytically.Thus,the loading angle isobtained from displacing angle.The verification of analytical results and laboratory results from reference research implies that theanalytical method is correct and working.In terms of in-situ condition,the direction of the load acting on steel bolt can be predictedwell according to the direction of the deformed rock bolt with respect to original bolt axis.
文摘Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System). In this study, finite element based software, ETABS, was used to generate and analyse three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Three models were used, one each for the three resisting systems. Each model consisted of three samples representing three different building heights of 45 m, 75 m, and 99 m. Wind Design Spreadsheet complying with the appropriate British Standards was used to compute preliminary wind load coefficients using the wind speed values from the relevant wind isopleth map of Nigeria as primary data. Lateral wind load was then applied at floor levels of each of the building samples. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements of storey tops and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.
文摘A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear correction factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rapidly convergent and to capture warping effects for composites, higher order displacement terms in the displacement kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deformation has also been considered in the formulation by taking into account shear strains ( rxz and ryz) as nodal unknowns. The element is very simple to formulate and could be coded up in research software. A small Fortran code has been developed to implement the element and various examples of isotropic and composite plates have been analyzed to show the effectiveness of the element.
基金financially supported by the Fundamental Research Funds for the Study on Formation and Evolution Mechanism of Soil Plug of Jacked Pipe Pile Cyclic Penetration in Clay (Grant No.52078483)。
文摘The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel plate-clay interface shear te sts were performed under the constant normal load(CNL)condition to inve stigate the effects of normal stre ss,cyclic amplitude,and number of cycles on a steel plate-clay interface using the GDS multi-function interface shear tester.Based on the experimental results,in monotonic shear tests,change of shear stress took place in the specimen,the shear stress rapidly reached the peak value at shear displacement of 1 mm,and then abruptly decreased to the residual value.In cyclic shear te sts,accumulated displacement was a better parameter to describe the soil degradation characteristics,and the degradation degree of shear stress became greater with the increasing of normal stress and accumulated displacement.Shear stress in post-cyclic monotonic shear tests did not generate a peak value and was lower than that in monotonic shear tests under the same normal stress.The soil was completely disturbed and reached the residual strength when the cumulative displacement approached 6 m.An empirical equation to evaluate shear stress degradation mechanism was formulated and the procedure of parameter identification was presented.