With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliabi...The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliability of turbine towers.This study proposes a rapid seismic analysis methodology for existing wind turbine tower structures.The method is demonstrated and validated using a case study on a 1.5 MW tubular steel wind turbine tower.Three finite element(FE)models are developed first.Field tests are conducted to obtain the turbine tower’s vibrational characteristics.The tests include(1) remotely measuring the tower vibration frequencies using a long range laser Doppler Vibrometer and(2) monitoring the tower structural vibration by mounting accelerometers along the height of the tubular structure.In-situ measurements are used to validate and update the FE models of the wind turbine tower.With the updated FE model that represents the practical structural conditions,seismic analyses are performed to study the structural failure,which is defined by the steel yielding of the tubular tower.This research is anticipated to benefit the management of the increasing number of wind energy converters by providing an understanding of the seismic assessment of existing tubular steel wind turbine towers.展开更多
Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study propos...Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.展开更多
Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments.In this work,a tapered beam model is proposed ...Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments.In this work,a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the monopile foundation assembled with rotating blades in the complex ocean environment.Several environment factors like wind,wave,current,and soil resistance are taken into account.The proposed model is ana-lytically solved with the Galerkin method.Based on the numerical results,the effects of various structure parameters including the taper angle,the height and thickness of the tower,the depth,and the diameter and the cement filler of the monopile on the funda-mental natural frequency of the wind turbine tower system are investigated in detail.It is found that the fundamental natural frequency decreases with the increase in the taper angle and the height and thickness of the tower,and increases with the increase in the diameter of the monopile.Moreover,filling cement into the monopile can effectively im-prove the fundamental natural frequency of the wind turbine tower system,but there is a critical value of the amount of cement maximizing the property of the monopile.This research may be helpful in the design and safety evaluation of offshore wind turbines.展开更多
A multi-objective optimization process for wind turbine steel towers is described in present work.The objective functions are tower top deformation and mass.The tower's height,radius and thickness are considered a...A multi-objective optimization process for wind turbine steel towers is described in present work.The objective functions are tower top deformation and mass.The tower's height,radius and thickness are considered as design variables.The mathematical relationships between objective functions and variables were predicted by adopting a response surface methodology(RSM).Furthermore,the multi-objective non-dominated sorting genetic algorithm-II(NSGA-II)is adopted to optimize the tower structure to achieve accurate results with the minimum top deformation and total mass.A case study on a 2MW wind turbine tower optimization is given,which computes the desired tower structure parameters.The results are compared with the original tower:a reduction of tower top deformation reduction by about 16.5%and a reduction of a mass by about 1.5%could be achieved for such an optimization process.展开更多
This work takes the bionic bamboo tower(BBT)of 2 MW wind turbine as the target,and the nondominated sorting genetic algorithm(NSGA-II)is utilized to optimize its structural parameters.Specifically,the objective functi...This work takes the bionic bamboo tower(BBT)of 2 MW wind turbine as the target,and the nondominated sorting genetic algorithm(NSGA-II)is utilized to optimize its structural parameters.Specifically,the objective functions are deformation and mass.Based on the correlation analysis,the target optimization parameters were determined.Furthermore,the Kriging model of the BBT was established through the Latin Hypercube SamplingDesign(LHSD).Finally,the BBT structure is optimized withmultiple objectives under the constraints of strength,natural frequency,and size.The comparison shows that the optimized BBT has an advantage in the Design Load Case(DLC).This advantage is reflected in the fact that the overall stability of the BBT has increased by 2.45%,while the displacement of the BBT has decreased by 0.77%.In addition,the mass of the tower is decreased by 1.49%.Correspondingly,the steel consumption of each BBT will be reduced by 2789 Kg.This work provides a scientific basis for the structural design of the tower in service.展开更多
The purpose of this study is to optimize the mass of 1.5 MW wind turbine steel tower performing Genetic Algorithm method (GA). In accordance with ASCE 7-98, AISC-89 and IEC61400-1 , the impact of loads on tower is cal...The purpose of this study is to optimize the mass of 1.5 MW wind turbine steel tower performing Genetic Algorithm method (GA). In accordance with ASCE 7-98, AISC-89 and IEC61400-1 , the impact of loads on tower is calculated within the highest safety conditions against buckling strength of each sections of tower by means of GA codes. The stifness along tower is ensured entirely while the mass of tower is mitigated and optimized.展开更多
The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower.The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to t...The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower.The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to the blocking effect of the upstream wake flow and increase the output power of the whole wind farm.However,there is still much space for further research.In this paper,experimental research is conducted on the near-wake deflection characteristics of wind turbine tower under yaw state,expecting the effect of throwing away a brick in order to get a gem.In the low-turbulence wind tunnel test,regarding the most unfavorable position where the rotating blades coincide with the tower,Particle image velocimetry(PIV)technology is used to test the instantaneous velocity field and output power and analyze experimental data at four different yaw angles,different inflow velocities and heights.Meanwhile,in order to quantitatively analyze the laws on wake deflection,the radon transformation is used to analyze the velocity contour for calculating the wake direction angle,and the results show high reliability.The comprehensive experimental results indicate that the near-wake flow field of the tower obviously deflects towards a side in the horizontal plane.With the increase of the yaw angle,the deflection angle of the wake flow field further increases,and the recovery of wake velocity accelerates.The closer to the blade root,the more complex the flow is,and the influence of the blade on the near wake of the tower is gradually weakened.The change laws on the wake direction angle with the yaw angle and the blade spanwise direction are obtained.The experiment in this paper can provide guidance for layout optimization of wind farm,and the obtained data can provide a scientific basis for the research on performance prediction of horizontal axis wind turbine.展开更多
To overcome the problems of natural decreases in power quality,and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters,an improved prediction m...To overcome the problems of natural decreases in power quality,and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters,an improved prediction model accounting for the dual effect of wind shear and tower shadow is,in this paper,built.Compared to the conventional prediction model,the proposed model contains a new constraint condition,which makes the disturbance term caused by the tower shadow effect always negative so that the prediction result is closer to the actual situation.Furthermore,wind turbine structural parameters such as hub height,rotor diameter,the diameter of the tower top,and rotor overhang on wind shear and tower shadow effect are also explored in detail.The results show that the wind shear effect became weaker with the increase in hub height.The hub height is independent of the tower shadow effect.The rotor diameter is positively correlated with the wind shear and tower shadow effect.The tower shadow effect is positively correlated with the diameter of the tower top and negatively correlated with the rotor overhang.展开更多
The comprehensive numerical simulation of the tower shadow effect on floating offshore wind turbines(FOWTs),an area less explored compared to fixed-bottom wind turbines,is presented in this study.The atmospheric bound...The comprehensive numerical simulation of the tower shadow effect on floating offshore wind turbines(FOWTs),an area less explored compared to fixed-bottom wind turbines,is presented in this study.The atmospheric boundary layer inflow and the joint north sea wave project random wave are used as the operating conditions for FOWT.The combination of computational fluid dynamics(CFD)software simulator for wind farm applications and turbine simulation tool OpenFAST is used to implement fluid-structure interaction calculations.The output power,platform motion,wake velocity deficit and vortex structures are analyzed to reveal the influence of the tower shadow effect on the FOWT.The results indicate that due to the fluctuation caused by the turbulent wind and the floating platform motion,the tower shadow effect of FOWT is less significant for its periodic power decay than that of fixed-bottom wind turbines.And according to the velocity deficit analysis,the influence area of the tower shadow effect on the wake is mainly in the near wake region.展开更多
The purpose of this study is to improve the efficiency of the power generation system of a solar tower using fluid dynamics. The power generation system of a solar tower can be designed and constructed at relatively l...The purpose of this study is to improve the efficiency of the power generation system of a solar tower using fluid dynamics. The power generation system of a solar tower can be designed and constructed at relatively low cost. However, the energy output tends to be low for its physical size compared with other renewable energy production systems. The technical and scientific improvement of these types of generation systems has lost its momentum since the shutdown of the wellknown Spanish pilot plant “Manzanares Solar Chimney” in 1989, although it still has the potential to play a role in renewable energy in the future. We have focused on the tower component of the system to seek possible enhancements of the power output of the internal turbine. As a result of our fluid dynamic shape optimization, a diffuser-shaped tower was employed to increase the internal flow speed of a scaled model. The results show a remarkable improvement in the power output of the internal wind turbine.展开更多
The original online version of this article (Masataka Motoyama, Kenichiro Sugitani, Yuji Ohya, et al. (2014) “Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind”, 2014, 6, 362-370...The original online version of this article (Masataka Motoyama, Kenichiro Sugitani, Yuji Ohya, et al. (2014) “Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind”, 2014, 6, 362-370. http://dx.doi.org/10.4236/epe.2014.611031) was published in October, 2014.The author wishes to correct the following error in text and Figures 9-11.展开更多
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金National Natural Science Foundation of China under Grant No.51208382Shanghai Science Foundation under Grant No.12ZR1433500+4 种基金Shanghai Pujiang Scholar Program under Grant No.13PJ1407900Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120072120001State Key Laboratory of Power Transmission Equipment&System Security and New Technology under Grant No.2007DA10512711414State Key Laboratory of Disaster Reduction in Civil Engineering under Grant No.SLDRCE14-B-02Tongji University Testing Facility Funding under Grant No.2012096
文摘The wind energy industry has been growing rapidly during the past decades.Along with this growth,engineering problems have gradually emerged in the wind power industry,including those related to the structural reliability of turbine towers.This study proposes a rapid seismic analysis methodology for existing wind turbine tower structures.The method is demonstrated and validated using a case study on a 1.5 MW tubular steel wind turbine tower.Three finite element(FE)models are developed first.Field tests are conducted to obtain the turbine tower’s vibrational characteristics.The tests include(1) remotely measuring the tower vibration frequencies using a long range laser Doppler Vibrometer and(2) monitoring the tower structural vibration by mounting accelerometers along the height of the tubular structure.In-situ measurements are used to validate and update the FE models of the wind turbine tower.With the updated FE model that represents the practical structural conditions,seismic analyses are performed to study the structural failure,which is defined by the steel yielding of the tubular tower.This research is anticipated to benefit the management of the increasing number of wind energy converters by providing an understanding of the seismic assessment of existing tubular steel wind turbine towers.
基金University of Malaya Research under Grant No.RP013B-15SUS,Postgraduate Research Fund(PG098-2015A)
文摘Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.
基金Project supported by the National Natural Science Foundation of China(Nos.11872233,11727804,and 11472163)the National Key Basic Research Project of China(No.2014CB046203)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-09-E00019)。
文摘Studying and analyzing the dynamic behavior of offshore wind turbines are of great importance to ensure the safety and improve the efficiency of such expensive equipments.In this work,a tapered beam model is proposed to investigate the dynamic response of an offshore wind turbine tower on the monopile foundation assembled with rotating blades in the complex ocean environment.Several environment factors like wind,wave,current,and soil resistance are taken into account.The proposed model is ana-lytically solved with the Galerkin method.Based on the numerical results,the effects of various structure parameters including the taper angle,the height and thickness of the tower,the depth,and the diameter and the cement filler of the monopile on the funda-mental natural frequency of the wind turbine tower system are investigated in detail.It is found that the fundamental natural frequency decreases with the increase in the taper angle and the height and thickness of the tower,and increases with the increase in the diameter of the monopile.Moreover,filling cement into the monopile can effectively im-prove the fundamental natural frequency of the wind turbine tower system,but there is a critical value of the amount of cement maximizing the property of the monopile.This research may be helpful in the design and safety evaluation of offshore wind turbines.
基金Supported by the National Natural Science Foundation of China(51965034)Foudamental Research Funds for the Lanzhou City Innovation and Entrepreneurship Projct(2018-RC-25)。
文摘A multi-objective optimization process for wind turbine steel towers is described in present work.The objective functions are tower top deformation and mass.The tower's height,radius and thickness are considered as design variables.The mathematical relationships between objective functions and variables were predicted by adopting a response surface methodology(RSM).Furthermore,the multi-objective non-dominated sorting genetic algorithm-II(NSGA-II)is adopted to optimize the tower structure to achieve accurate results with the minimum top deformation and total mass.A case study on a 2MW wind turbine tower optimization is given,which computes the desired tower structure parameters.The results are compared with the original tower:a reduction of tower top deformation reduction by about 16.5%and a reduction of a mass by about 1.5%could be achieved for such an optimization process.
基金This work was supported by the National Natural Science Foundation of China(No.51965034).
文摘This work takes the bionic bamboo tower(BBT)of 2 MW wind turbine as the target,and the nondominated sorting genetic algorithm(NSGA-II)is utilized to optimize its structural parameters.Specifically,the objective functions are deformation and mass.Based on the correlation analysis,the target optimization parameters were determined.Furthermore,the Kriging model of the BBT was established through the Latin Hypercube SamplingDesign(LHSD).Finally,the BBT structure is optimized withmultiple objectives under the constraints of strength,natural frequency,and size.The comparison shows that the optimized BBT has an advantage in the Design Load Case(DLC).This advantage is reflected in the fact that the overall stability of the BBT has increased by 2.45%,while the displacement of the BBT has decreased by 0.77%.In addition,the mass of the tower is decreased by 1.49%.Correspondingly,the steel consumption of each BBT will be reduced by 2789 Kg.This work provides a scientific basis for the structural design of the tower in service.
文摘The purpose of this study is to optimize the mass of 1.5 MW wind turbine steel tower performing Genetic Algorithm method (GA). In accordance with ASCE 7-98, AISC-89 and IEC61400-1 , the impact of loads on tower is calculated within the highest safety conditions against buckling strength of each sections of tower by means of GA codes. The stifness along tower is ensured entirely while the mass of tower is mitigated and optimized.
基金Supported by the National Natural Science Foundation of China(No.51766014)the Natural Science Foundation of Inner Mongolia Autonomous Region(Nos.2019MS05024,2020LH06002).
文摘The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower.The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to the blocking effect of the upstream wake flow and increase the output power of the whole wind farm.However,there is still much space for further research.In this paper,experimental research is conducted on the near-wake deflection characteristics of wind turbine tower under yaw state,expecting the effect of throwing away a brick in order to get a gem.In the low-turbulence wind tunnel test,regarding the most unfavorable position where the rotating blades coincide with the tower,Particle image velocimetry(PIV)technology is used to test the instantaneous velocity field and output power and analyze experimental data at four different yaw angles,different inflow velocities and heights.Meanwhile,in order to quantitatively analyze the laws on wake deflection,the radon transformation is used to analyze the velocity contour for calculating the wake direction angle,and the results show high reliability.The comprehensive experimental results indicate that the near-wake flow field of the tower obviously deflects towards a side in the horizontal plane.With the increase of the yaw angle,the deflection angle of the wake flow field further increases,and the recovery of wake velocity accelerates.The closer to the blade root,the more complex the flow is,and the influence of the blade on the near wake of the tower is gradually weakened.The change laws on the wake direction angle with the yaw angle and the blade spanwise direction are obtained.The experiment in this paper can provide guidance for layout optimization of wind farm,and the obtained data can provide a scientific basis for the research on performance prediction of horizontal axis wind turbine.
基金funded by the National Natural Science Foundation of China(51866012).
文摘To overcome the problems of natural decreases in power quality,and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters,an improved prediction model accounting for the dual effect of wind shear and tower shadow is,in this paper,built.Compared to the conventional prediction model,the proposed model contains a new constraint condition,which makes the disturbance term caused by the tower shadow effect always negative so that the prediction result is closer to the actual situation.Furthermore,wind turbine structural parameters such as hub height,rotor diameter,the diameter of the tower top,and rotor overhang on wind shear and tower shadow effect are also explored in detail.The results show that the wind shear effect became weaker with the increase in hub height.The hub height is independent of the tower shadow effect.The rotor diameter is positively correlated with the wind shear and tower shadow effect.The tower shadow effect is positively correlated with the diameter of the tower top and negatively correlated with the rotor overhang.
基金supported by the Key Laboratory of Ministry of Education for Coastal Disaster and Protection,Hohai University(Grant No.J202202)the National Natural Science Foundation of China(Grant No.11872174)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.B200202236)the Key Laboratory of Port,Waterway&Sedimentation Engineering Ministry of Communications,PRC(Grant No.Yk220001-2).
文摘The comprehensive numerical simulation of the tower shadow effect on floating offshore wind turbines(FOWTs),an area less explored compared to fixed-bottom wind turbines,is presented in this study.The atmospheric boundary layer inflow and the joint north sea wave project random wave are used as the operating conditions for FOWT.The combination of computational fluid dynamics(CFD)software simulator for wind farm applications and turbine simulation tool OpenFAST is used to implement fluid-structure interaction calculations.The output power,platform motion,wake velocity deficit and vortex structures are analyzed to reveal the influence of the tower shadow effect on the FOWT.The results indicate that due to the fluctuation caused by the turbulent wind and the floating platform motion,the tower shadow effect of FOWT is less significant for its periodic power decay than that of fixed-bottom wind turbines.And according to the velocity deficit analysis,the influence area of the tower shadow effect on the wake is mainly in the near wake region.
文摘The purpose of this study is to improve the efficiency of the power generation system of a solar tower using fluid dynamics. The power generation system of a solar tower can be designed and constructed at relatively low cost. However, the energy output tends to be low for its physical size compared with other renewable energy production systems. The technical and scientific improvement of these types of generation systems has lost its momentum since the shutdown of the wellknown Spanish pilot plant “Manzanares Solar Chimney” in 1989, although it still has the potential to play a role in renewable energy in the future. We have focused on the tower component of the system to seek possible enhancements of the power output of the internal turbine. As a result of our fluid dynamic shape optimization, a diffuser-shaped tower was employed to increase the internal flow speed of a scaled model. The results show a remarkable improvement in the power output of the internal wind turbine.
文摘The original online version of this article (Masataka Motoyama, Kenichiro Sugitani, Yuji Ohya, et al. (2014) “Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind”, 2014, 6, 362-370. http://dx.doi.org/10.4236/epe.2014.611031) was published in October, 2014.The author wishes to correct the following error in text and Figures 9-11.