The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defec...The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.展开更多
A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used ...A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibra- tion graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is dis- cussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P(Q)-S curve.展开更多
文摘The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.
文摘A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibra- tion graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is dis- cussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P(Q)-S curve.