Signal-to-Interference Ratio(SIR) is a very important metric of communication link quality. For wireless cellular systems, several control mechanisms, such as power control mechanisms, rate control mechanisms, and all...Signal-to-Interference Ratio(SIR) is a very important metric of communication link quality. For wireless cellular systems, several control mechanisms, such as power control mechanisms, rate control mechanisms, and allocation of radio resource, are based on SIR estimation.In previous researches, most of researchers concentrated on WCDMA systems, in which pilot symbol is time-multiplexed with data symbol; the method developed in this case is not feasible for cdma2000 systems where pilot symbol is code-multiplexed with data symbol. This paper first develops the SIR estimators based on the reverse pilot channel and then derives the approximate analytic expression for its Mean Squared Error (MSE) function, the accuracy of which is validated through simulation. It is shown that the MSE of the new SIR estimator is significantly smaller than that of other widely used SIR estimators, especially in low SIR case. Finally, the estimate quality of the proposed method is further improved by long-termly averaging the sample interference.展开更多
As one of the key characteristics in cognitive wireless networks(CWNs),network environment awareness techniques have received much attention recently.Instead of traditional spectrum sensing technology that suffers fro...As one of the key characteristics in cognitive wireless networks(CWNs),network environment awareness techniques have received much attention recently.Instead of traditional spectrum sensing technology that suffers from problems of miss detection,false alarm,hidden node,and inefficiency,cognitive pilot channel(CPC) technology has been proposed as one of the candidate solutions for an efficient and accurate network information delivery scheme to user equipment(UE).The aim of the CPC technology is to provide the necessary information for the reconfiguration of the UE using the public signaling channel.To ensure the efficient information delivery,the whole geographical area covered by the CPC is divided into square meshes of the same size.Moreover,two typical network information transmission modes for CPC deployment are also proposed:broadcast CPC mode and on-demand CPC mode.To further improve the efficiency of network information delivery,an efficient dynamic mesh grouping scheme has been designed which is based on the fractal theory for the broadcast CPC mode,where adaptive rectangular sized meshes are used to approximately cover the whole area.Compared to the traditional fixed size mesh division strategy,results show that the proposed dynamic mesh grouping scheme significantly reduces the number of meshes by grouping similar meshes together,and the average delay of receiving CPC information on the UE side is therefore reduced.展开更多
The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement met...The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.展开更多
Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot...Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot symbols for channel estimation, introduces overhead and it is desirable to keep the number of pilot symbols as minimum as possible. This paper introduces a new tight bound for the number of pilots in channel estimation using adaptive scheme in OFDM systems. We calculate the minimum number of necessary pilots using two approaches. The first approach for the number of pilots is obtained based on Doppler frequency shift estimation and the second approach is acquired based on channel length estimation using second order statistics of received signal. Finally we obtain the tight bound for the number of pilots using attained values.展开更多
In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data....In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data. To estimate channel in time or frequency some pilot must be used. Number of these pilots and deployment of them is very important for proper estimation in different channel with varying time and frequency. Carrier sense multiple access (CSMA) and hybrid multiple access protocol are taken into consideration in MAC sub-layer. Multilayered perceptions neural network with backpropagation (BP) learning channel estimator algorithm with different pilot deployment compare to classic algorithm in for channel estimating. Simulation results show the proposed neural network estimation decreases bit error rate and therefore network throughput increases.展开更多
Orthogonal Frequency Division Multiplexing(OFDM)is very suitable for high data rate transmission in wide band wireless channel for the excellent capability to mitigate the frequency selective fading and Inter-Symbol I...Orthogonal Frequency Division Multiplexing(OFDM)is very suitable for high data rate transmission in wide band wireless channel for the excellent capability to mitigate the frequency selective fading and Inter-Symbol Interference(ISI).In WiMAX system,Orthogonal Frequency Division Multiple Access(OFDMA)is adopted as the basic multiple access scheme,and different pilot patterns has been defined for both uplink and downlink channels.Pilot pattern should be changed,especially when Multiple Input Multiple Output(MIMO)technique is combined with OFDMA,in order to support multiple antennas.There are five pilot patterns in the WiMAX-MIMO-OFDMA system,namely:Downlink-Partially Used Sub-Channel(DL-PUSC),Downlink-Fully Used Sub-Channel(DL-FUSC),Downlink-Optional Fully Used Sub-Channel(DL-OFUSC),Uplink-Partially Used Sub-Channel(UL-PUSC)and Uplink-Optional Partially Used Sub-Channel(UL-OPUSC).Moreover,by analyzing the simulation results of time domain Least Square(LS),frequency domain LS,and Fast Fourier Transform(FFT)-based channel estimation algorithms,the best pilot pattern can be found.Based on the simulation comparison of several channel estimation methods in the WiMAX-MIMO-OFDMA system presented in this article,the best channel estimation for each pilot pattern is concluded.展开更多
A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler ...A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.展开更多
In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge...In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge that is not easily obtained. Therefore, the pilot tones have to be close enough to fulfill the sampling theorem. In this case the statistical knowledge of the channel is not required to reconstruct correctly the channel impulse response (CIR). This paper explores the optimal placement and number of pilot symbols, we investigate optimal training sequences in OFDM systems and we analyze the number of pilot symbols required to fulfill the sampling theorem. Using a general model for a multipath slowly fading channel, the approach is based on the LS as a criterion of channel estimation while the channel interpolation is done using the piecewise-constant interpolation compromising between complexity and performance. Simulation results demonstrate the good performance of our approach.展开更多
This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean squar...This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.展开更多
针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频...针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。展开更多
This paper mainly elaborates the studies of channel estimation and downlink data transmission in Massive MIMO. As there are different types of interference in single-cell and multi-cell systems, this paper establishes...This paper mainly elaborates the studies of channel estimation and downlink data transmission in Massive MIMO. As there are different types of interference in single-cell and multi-cell systems, this paper establishes different models for them separately. In terms of uplink training, for getting channel state information, we introduce LS and MMSE channel estimation algorithms and make a comparison between them. At the same time, the problem of pilot contamination is solved by cell classification and pilot identification. Next, this paper defines mathematical models for downlink data transmission. We use pre-coding methods (including Zero-forcing and Maximal Ratio Combining schemes) and optimize power distribution to improve channel capacity and transmission rate. Furthermore, this paper provides numerical results to show the simulation performance in both single-cell and multi-cell systems and extends to prospects in the future.展开更多
<div style="text-align:justify;"> This paper proposes a deep learning-based channel estimation method for orthogonal frequency-division multiplexing (OFDM) systems. The existing OFDM receiver has low e...<div style="text-align:justify;"> This paper proposes a deep learning-based channel estimation method for orthogonal frequency-division multiplexing (OFDM) systems. The existing OFDM receiver has low estimation accuracy when estimating channel state information (CSI) with fewer pilots. To tackle the problem, in this paper, a deep learning model is first trained by the interpolated channel frequency responses (CFRs) and then used to denoise the CFR estimated by least square (LS) estimation. The proposed deep neural network (DNN) can also be trained in a short time because it only learns the CFR and the network structure is simple. According to the simulation results, the performance of the DNN estimator can be compared with the minimum mean-square error (MMSE) estimator. Furthermore, the DNN approach is more robust than conventional methods when fewer pilots are used. In summary, deep learning is a promising tool for channel estimation in wireless communications. </div>展开更多
文摘Signal-to-Interference Ratio(SIR) is a very important metric of communication link quality. For wireless cellular systems, several control mechanisms, such as power control mechanisms, rate control mechanisms, and allocation of radio resource, are based on SIR estimation.In previous researches, most of researchers concentrated on WCDMA systems, in which pilot symbol is time-multiplexed with data symbol; the method developed in this case is not feasible for cdma2000 systems where pilot symbol is code-multiplexed with data symbol. This paper first develops the SIR estimators based on the reverse pilot channel and then derives the approximate analytic expression for its Mean Squared Error (MSE) function, the accuracy of which is validated through simulation. It is shown that the MSE of the new SIR estimator is significantly smaller than that of other widely used SIR estimators, especially in low SIR case. Finally, the estimate quality of the proposed method is further improved by long-termly averaging the sample interference.
基金supported by the National Basic Research Program of China (2009CB320400)the National Natural Science Foundation of China(60832009,61121001)+1 种基金the Program for New Century Excellent Talents in University (NCET-01-0259)the National Science and Technology Major Project of China (2012ZX03003006)
文摘As one of the key characteristics in cognitive wireless networks(CWNs),network environment awareness techniques have received much attention recently.Instead of traditional spectrum sensing technology that suffers from problems of miss detection,false alarm,hidden node,and inefficiency,cognitive pilot channel(CPC) technology has been proposed as one of the candidate solutions for an efficient and accurate network information delivery scheme to user equipment(UE).The aim of the CPC technology is to provide the necessary information for the reconfiguration of the UE using the public signaling channel.To ensure the efficient information delivery,the whole geographical area covered by the CPC is divided into square meshes of the same size.Moreover,two typical network information transmission modes for CPC deployment are also proposed:broadcast CPC mode and on-demand CPC mode.To further improve the efficiency of network information delivery,an efficient dynamic mesh grouping scheme has been designed which is based on the fractal theory for the broadcast CPC mode,where adaptive rectangular sized meshes are used to approximately cover the whole area.Compared to the traditional fixed size mesh division strategy,results show that the proposed dynamic mesh grouping scheme significantly reduces the number of meshes by grouping similar meshes together,and the average delay of receiving CPC information on the UE side is therefore reduced.
文摘The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.
文摘Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot symbols for channel estimation, introduces overhead and it is desirable to keep the number of pilot symbols as minimum as possible. This paper introduces a new tight bound for the number of pilots in channel estimation using adaptive scheme in OFDM systems. We calculate the minimum number of necessary pilots using two approaches. The first approach for the number of pilots is obtained based on Doppler frequency shift estimation and the second approach is acquired based on channel length estimation using second order statistics of received signal. Finally we obtain the tight bound for the number of pilots using attained values.
文摘In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data. To estimate channel in time or frequency some pilot must be used. Number of these pilots and deployment of them is very important for proper estimation in different channel with varying time and frequency. Carrier sense multiple access (CSMA) and hybrid multiple access protocol are taken into consideration in MAC sub-layer. Multilayered perceptions neural network with backpropagation (BP) learning channel estimator algorithm with different pilot deployment compare to classic algorithm in for channel estimating. Simulation results show the proposed neural network estimation decreases bit error rate and therefore network throughput increases.
文摘Orthogonal Frequency Division Multiplexing(OFDM)is very suitable for high data rate transmission in wide band wireless channel for the excellent capability to mitigate the frequency selective fading and Inter-Symbol Interference(ISI).In WiMAX system,Orthogonal Frequency Division Multiple Access(OFDMA)is adopted as the basic multiple access scheme,and different pilot patterns has been defined for both uplink and downlink channels.Pilot pattern should be changed,especially when Multiple Input Multiple Output(MIMO)technique is combined with OFDMA,in order to support multiple antennas.There are five pilot patterns in the WiMAX-MIMO-OFDMA system,namely:Downlink-Partially Used Sub-Channel(DL-PUSC),Downlink-Fully Used Sub-Channel(DL-FUSC),Downlink-Optional Fully Used Sub-Channel(DL-OFUSC),Uplink-Partially Used Sub-Channel(UL-PUSC)and Uplink-Optional Partially Used Sub-Channel(UL-OPUSC).Moreover,by analyzing the simulation results of time domain Least Square(LS),frequency domain LS,and Fast Fourier Transform(FFT)-based channel estimation algorithms,the best pilot pattern can be found.Based on the simulation comparison of several channel estimation methods in the WiMAX-MIMO-OFDMA system presented in this article,the best channel estimation for each pilot pattern is concluded.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA01Z288)the National Natural Science Foundation of China (60702057)+2 种基金the National Science Fund for Distinguished Young Scholars (60725105)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the Fundamental Research Projects,Xidian University (JY10000901030)
文摘A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.
文摘In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge that is not easily obtained. Therefore, the pilot tones have to be close enough to fulfill the sampling theorem. In this case the statistical knowledge of the channel is not required to reconstruct correctly the channel impulse response (CIR). This paper explores the optimal placement and number of pilot symbols, we investigate optimal training sequences in OFDM systems and we analyze the number of pilot symbols required to fulfill the sampling theorem. Using a general model for a multipath slowly fading channel, the approach is based on the LS as a criterion of channel estimation while the channel interpolation is done using the piecewise-constant interpolation compromising between complexity and performance. Simulation results demonstrate the good performance of our approach.
文摘This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.
文摘针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。
文摘This paper mainly elaborates the studies of channel estimation and downlink data transmission in Massive MIMO. As there are different types of interference in single-cell and multi-cell systems, this paper establishes different models for them separately. In terms of uplink training, for getting channel state information, we introduce LS and MMSE channel estimation algorithms and make a comparison between them. At the same time, the problem of pilot contamination is solved by cell classification and pilot identification. Next, this paper defines mathematical models for downlink data transmission. We use pre-coding methods (including Zero-forcing and Maximal Ratio Combining schemes) and optimize power distribution to improve channel capacity and transmission rate. Furthermore, this paper provides numerical results to show the simulation performance in both single-cell and multi-cell systems and extends to prospects in the future.
基金Acknowledgments: This research was financed by the National Nature Science Foundation of China (No. 60872037) and Chongqing Nature Science Foundation of China (No. 2008BB2411).
文摘<div style="text-align:justify;"> This paper proposes a deep learning-based channel estimation method for orthogonal frequency-division multiplexing (OFDM) systems. The existing OFDM receiver has low estimation accuracy when estimating channel state information (CSI) with fewer pilots. To tackle the problem, in this paper, a deep learning model is first trained by the interpolated channel frequency responses (CFRs) and then used to denoise the CFR estimated by least square (LS) estimation. The proposed deep neural network (DNN) can also be trained in a short time because it only learns the CFR and the network structure is simple. According to the simulation results, the performance of the DNN estimator can be compared with the minimum mean-square error (MMSE) estimator. Furthermore, the DNN approach is more robust than conventional methods when fewer pilots are used. In summary, deep learning is a promising tool for channel estimation in wireless communications. </div>