The robot pilot is a new concept of a robot system that pilots a manned aircraft,thereby forming a new type of unmanned aircraft system(UAS)that makes full use of the platform maturity,load capacity,and airworthiness ...The robot pilot is a new concept of a robot system that pilots a manned aircraft,thereby forming a new type of unmanned aircraft system(UAS)that makes full use of the platform maturity,load capacity,and airworthiness of existing manned aircraft while greatly expanding the operation and application fields of UASs.In this research,the implementation and advantages of the robot pilot concept are discussed in detail,and a helicopter robot pilot is proposed to fly manned helicopters.The robot manipulators are designed according to the handling characteristics of the helicopter-controlling mechanism.Based on a kinematic analysis of the robot manipulators,a direct-driving method is established for the robot flight controller to reduce the time delay and control error of the robot servo process.A supporting ground station is built to realize different flight modes and the functional integration of the robot pilot.Finally,a prototype of the helicopter robot pilot is processed and installed in a helicopter to carry out flight tests.The test results show that the robot pilot can independently fly the helicopter to realize forward flight,backward flight,side flight,and turning flight,which verifies the effectiveness of the helicopter robot pilot.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
Peking Union Medical College(PUMC)launched the"4+4"Medical Doctor(MD)pilot program in 2018,admitting students with non-medical backgrounds from top universities,aligning with national medical talent training...Peking Union Medical College(PUMC)launched the"4+4"Medical Doctor(MD)pilot program in 2018,admitting students with non-medical backgrounds from top universities,aligning with national medical talent training policies to foster diverse and eager learners in medicine.On the occasion of the graduation of the first class of the"4+4"MD pilot class at PUMC in 2023,we reviewed the teaching reform in the pilot program and carried out a systematic survey and interviews with students,faculties,and management staff of the pilot class.This article reports on the measures taken by the pilot class at PUMC in enrollment and curriculum setting,and demonstrates the achievements of the pilot class in terms of student academic background structure,knowledge acquisition and skill learning,scientific research ability,and course evaluation.The results indicated that the pilot class had met the national demand for the"Medicine+X"talent training model.More specifically,with a diverse academic backgrounds,the pilot class graduates had academic levels comparable to the eight-year medical education graduates,and their scientific research abilities were satisfactory.The pilot program at PUMC will optimize the curriculum setting,strengthen the construction of faculty,learning resources,and teaching facilities,and reform the academic evaluation methods,thus deepening the reform of medical education and improving the"4+4"MD program as a novel medical education model.展开更多
[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[M...[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[Methods]P.heterophylla fibrous roots were taken as the matrix material,and Box Behnken design was used to analyze the extraction time,composite enzyme addition amount,and liquid-solid ratio for response surface optimization experiments,and then applied to the pilot extraction of P.heterophylla fibrous roots.[Results]Response surface analysis showed that all factors had a significant impact on the experimental indicators.The optimal extraction process conditions for polysaccharides from P.heterophylla fibrous roots were extraction time of 2.7 h,compound enzyme addition of 2.5%,and liquid-solid ratio of 32.The yield of polysaccharides from P.heterophylla fibrous roots was 4.83%.The water extraction process of P.heterophylla fibrous roots extraction pilot was used as the control group for response surface optimization of the pilot experiment.The optimization results showed that the extraction time was 3 h,the amount of composite enzyme added was 2.5%,and the liquid-solid ratio was 28.The polysaccharide yield was 4.75%,an increase of 4.63%compared to the control group.[Conclusions]This paper could provide feasibility for the innovation of enzy-matic hydrolysis technology for P.heterophylla fibrous roots and its workshop pilot practice application,as well as a reference for the industrial application of its medicinal resources.展开更多
Since the 18th National Congress of the Communist Party of China,the country has established 21 Free Trade Pilot Zones(FTZs),achieving significant pioneering results in reform and opening up and creating a strong demo...Since the 18th National Congress of the Communist Party of China,the country has established 21 Free Trade Pilot Zones(FTZs),achieving significant pioneering results in reform and opening up and creating a strong demonstrative effect nationwide.The basic experience from a decade of FTZs includes:adhering to the centralized and unified leadership of the CPC Central Committee;combining top-level design with encouragement of grassroots innovation;leveraging the distinct characteristics and strengths of FTZs to form a differentiated development pattern;maintaining the integration of opening up with domestic reforms;using openness to drive reforms;and organically combining openness with national security assurance.Under the current and future new circumstances,China’s FTZs face new challenges and tasks.In accordance with the directives of the 20th National Congress of the Communist Party of China,an enhancement strategy for the FTZs needs to be implemented.This involves the following:First,accurately understanding and responding to the changing situation to create strategic opportunities.Second,shifting paradigms to implement innovation-driven strategies,using the new development pattern concept to guide the reform experiments and construction of the FTZs.Third,granting more autonomy to FTZs for reforms,pursuing progress while maintaining stability,and solidly advancing the reform experiments in the FTZs.Fourth,orderly expanding the opening up of the service sector and cautiously advancing the internationalization of the renminbi.Fifth,promoting innovative development in trade to build a strong trade nation.Sixth,establishing synergy with bilateral FTZs,Belt and Road cooperation,and national diplomatic strategies to enhance the linkage effect.展开更多
Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who...Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care.展开更多
This manuscript presents a research proposal to investigate how hazardous attitudes among general aviation pilots influence pilot performance in aviation accidents. General aviation pilots train to maintain safe flyin...This manuscript presents a research proposal to investigate how hazardous attitudes among general aviation pilots influence pilot performance in aviation accidents. General aviation pilots train to maintain safe flying conditions, but accidents still occur, and human factors figure prominently among the causes of aviation accidents. The levels of hazardous attitudes among pilots may influence the likelihood of engaging in risky flight behaviors that can lead to accidents. This quantitative study aims to determine whether dangerous attitudes impact risk perception in general aviation pilots. The study will focus on two specific hazardous attitudes, “Anti-Authority” and Macho” behaviors. Among the hazardous attitudes identified by the Federal Aviation Administration (FAA), the two attitudes often stand out in accident investigations and pilot narratives. While all hazardous attitudes have inherent dangers, these two attitudes tend to be more frequently cited in accident reports and investigations. Despite rigorous training in safe flying conditions, general aviation accidents still transpire due to human factors. This research hypothesizes that the five attitudes from the hazardous attitude model, particularly Anti-Authority and Macho, significantly shape pilots’ risk perception. The insights from this study would benefit stakeholders, like the Aircraft Owners and Pilots Association (AOPA), Air Safety Institute, and aviation training programs, in creating training modules tailored to reduce such attitudes.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler ...A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.展开更多
How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to t...How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.展开更多
Massive Multiple-Input-Multiple-Output(MIMO)is a promising technology to meet the demand for the connection of massive devices and high data capacity for mobile networks in the next generation communication system.How...Massive Multiple-Input-Multiple-Output(MIMO)is a promising technology to meet the demand for the connection of massive devices and high data capacity for mobile networks in the next generation communication system.However,due to the massive connectivity of mobile devices,the pilot contamination problem will severely degrade the communication quality and spectrum efficiency of the massive MIMO system.We propose a deep Monte Carlo Tree Search(MCTS)-based intelligent Pilot-power Allocation Scheme(iPAS)to address this issue.The core of iPAS is a multi-task deep reinforcement learning algorithm that can automatically learn the radio environment and make decisions on the pilot sequence and power allocation to maximize the spectrum efficiency with self-play training.To accelerate the searching convergence,we introduce a Deep Neural Network(DNN)to predict the pilot sequence and power allocation actions.The DNN is trained in a self-supervised learning manner,where the training data is generated from the searching process of the MCTS algorithm.Numerical results show that our proposed iPAS achieves a better Cumulative Distribution Function(CDF)of the ergodic spectral efficiency compared with the previous suboptimal algorithms.展开更多
In this paper,the spectral efficiency(SE)of an uplink hardware-constrained cell-free massive multi-input multi-output(MIMO)system with maximal ratio combining(MRC)receiver filters in the context of superimposed pilots...In this paper,the spectral efficiency(SE)of an uplink hardware-constrained cell-free massive multi-input multi-output(MIMO)system with maximal ratio combining(MRC)receiver filters in the context of superimposed pilots(SPs)is investigated.Tractable closed-form SE expressions for the considered system are derived,which share us with opportunities to explore the impacts of the hardware quality coefficient,the length of coherence interval,and the power balance factor between pilot and data signals.Numerical results indicate that the achievable SE deteriorates as the hardware quality decreases and is more susceptible to the hardware impairments at the user equipments(UEs).Besides,we observe that SPs outperform regular pilots(RPs)in terms of SE and this performance gain is heavily dependent on the values of power balance factor and coherence interval.However,the superiorities of SPs over RPs have vanished when severe hardware imperfections are considered.展开更多
The establishment of Shanghai Pilot Free Trade Zone provides many possibilities for China's economic construction. This paper made a comparative analysis on investment management system of Shanghai Pilot Free Trad...The establishment of Shanghai Pilot Free Trade Zone provides many possibilities for China's economic construction. This paper made a comparative analysis on investment management system of Shanghai Pilot Free Trade Zone and traditional investment management system,discussed achievements and problems of reform of investment management system of Shanghai Pilot Free Trade Zone,and finally came up with pertinent policy recommendations.展开更多
Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a met...Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.展开更多
Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot...Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot symbols for channel estimation, introduces overhead and it is desirable to keep the number of pilot symbols as minimum as possible. This paper introduces a new tight bound for the number of pilots in channel estimation using adaptive scheme in OFDM systems. We calculate the minimum number of necessary pilots using two approaches. The first approach for the number of pilots is obtained based on Doppler frequency shift estimation and the second approach is acquired based on channel length estimation using second order statistics of received signal. Finally we obtain the tight bound for the number of pilots using attained values.展开更多
Orthogonal time frequency space(OTFS)modulation has been proven to be superior to traditional orthogonal frequency division multiplexing(OFDM)systems in high-speed communication scenarios.However,the existing channel ...Orthogonal time frequency space(OTFS)modulation has been proven to be superior to traditional orthogonal frequency division multiplexing(OFDM)systems in high-speed communication scenarios.However,the existing channel estimation schemes may results in poor peak to average power ratio(PAPR)performance of OTFS system or low spectrum efficiency.Hence,in this paper,we propose a low PAPR channel estimation scheme with high spectrum efficiency.Specifically,we design a multiple scattered pilot pattern,where multiple low power pilot symbols are superimposed with data symbols in delay-Doppler domain.Furthermore,we propose the placement rules for pilot symbols,which can guarantee the low PAPR.Moreover,the data aided iterative channel estimation was invoked,where joint channel estimation is proposed by exploiting multiple independent received signals instead of only one received signal in the existing scheme,which can mitigate the interference imposed by data symbols for channel estimation.Simulation results shows that the proposed multiple scattered pilot aided channel estimation scheme can significantly reduce the PAPR while keeping the high spectrum efficiency.展开更多
Pilot contamination can bring up a grave impairment in the performance of massive multiple-input multiple-output(MIMO)systems.In this paper,an improved time-shifted pilot scheme is proposed to reduce the pilot contami...Pilot contamination can bring up a grave impairment in the performance of massive multiple-input multiple-output(MIMO)systems.In this paper,an improved time-shifted pilot scheme is proposed to reduce the pilot contamination,where orthogonal pilots are employed in the same group to eliminate the residual intragroup interference existing in the original time-shifted pilot scheme.Meanwhile,the rigorous closed-form expressions of both downlink and uplink transmission rates with a finite number of antennas are derived,and it is shown that the intra-group interference can be completely eliminated by the proposed scheme.Simulation results demonstrate that both downlink and uplink transmission rates are significantly improved by employing the proposed scheme.展开更多
This paper proposes a novel joint channel estimation and beamforming scheme for the massive multiple-input-multiple-output(MIMO)frequency-division duplexing(FDD) wireless legitimate surveillance system. With the propo...This paper proposes a novel joint channel estimation and beamforming scheme for the massive multiple-input-multiple-output(MIMO)frequency-division duplexing(FDD) wireless legitimate surveillance system. With the proposed scheme,the monitor with the full duplex capability realizes the proactive eavesdropping of the suspicious link by leveraging the pilot attack approach. Specifically, exploiting the effective eavesdropping rate and the mean square error as performance metrics and setting a total power budget at the training and transmission phases,while guaranteeing the information from suspicious source can be successfully decode, joint pilot design,power allocation and beamforming strategy are formulated as optimization problems for the two objective functions: MSE and effective eavesdropping rate. A closed-form expression of the optimal pilot with the limited length can be obtained via the channel correlation. The optimal power problem at the training phase can be solved by a simple bisection method. Then,based on the obtained imperfect estimated channel,the jamming beamforming at monitor optimization algorithm is proposed by utilizing the convex Semidefinite Programming approach to maximize the effective eavesdropping rate. Numerical results show that the proposed joint pilot design, power allocation and beamforming optimization scheme can improve the surveillance performance of the legitimate monitor as compared to the existing passive eavesdropping and jamming-assisted eavesdropping.展开更多
Channel estimation using pilot is common used in OFDM system.The pilot is usually time division multiplexed with the informative sequence.One of the main drawbacks is bandwidth losing.In this paper,a new method was pr...Channel estimation using pilot is common used in OFDM system.The pilot is usually time division multiplexed with the informative sequence.One of the main drawbacks is bandwidth losing.In this paper,a new method was proposed to perform channel estimation in OFDM system.The pilot is arithmetically added to the output of OFDM modulator.Receiver uses the hidden pilot to get an accurate estimation of the channel.Then pilot is removed after channel estimation.The Cramer-Rao lower bound for this method was deprived.The performance of the algorithm is then shown.Compared with traditional methods,the proposed algorithm increases the bandwidth efficiency dramatically.展开更多
基金supported by the National Natural Science Foundation of China(11972059)。
文摘The robot pilot is a new concept of a robot system that pilots a manned aircraft,thereby forming a new type of unmanned aircraft system(UAS)that makes full use of the platform maturity,load capacity,and airworthiness of existing manned aircraft while greatly expanding the operation and application fields of UASs.In this research,the implementation and advantages of the robot pilot concept are discussed in detail,and a helicopter robot pilot is proposed to fly manned helicopters.The robot manipulators are designed according to the handling characteristics of the helicopter-controlling mechanism.Based on a kinematic analysis of the robot manipulators,a direct-driving method is established for the robot flight controller to reduce the time delay and control error of the robot servo process.A supporting ground station is built to realize different flight modes and the functional integration of the robot pilot.Finally,a prototype of the helicopter robot pilot is processed and installed in a helicopter to carry out flight tests.The test results show that the robot pilot can independently fly the helicopter to realize forward flight,backward flight,side flight,and turning flight,which verifies the effectiveness of the helicopter robot pilot.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
文摘Peking Union Medical College(PUMC)launched the"4+4"Medical Doctor(MD)pilot program in 2018,admitting students with non-medical backgrounds from top universities,aligning with national medical talent training policies to foster diverse and eager learners in medicine.On the occasion of the graduation of the first class of the"4+4"MD pilot class at PUMC in 2023,we reviewed the teaching reform in the pilot program and carried out a systematic survey and interviews with students,faculties,and management staff of the pilot class.This article reports on the measures taken by the pilot class at PUMC in enrollment and curriculum setting,and demonstrates the achievements of the pilot class in terms of student academic background structure,knowledge acquisition and skill learning,scientific research ability,and course evaluation.The results indicated that the pilot class had met the national demand for the"Medicine+X"talent training model.More specifically,with a diverse academic backgrounds,the pilot class graduates had academic levels comparable to the eight-year medical education graduates,and their scientific research abilities were satisfactory.The pilot program at PUMC will optimize the curriculum setting,strengthen the construction of faculty,learning resources,and teaching facilities,and reform the academic evaluation methods,thus deepening the reform of medical education and improving the"4+4"MD program as a novel medical education model.
基金Supported by Special Project of Central Leading Local Science and Technology Development(202113030)Regional Development Project of Fujian Provincial Science and Technology Plan(2022N3017).
文摘[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[Methods]P.heterophylla fibrous roots were taken as the matrix material,and Box Behnken design was used to analyze the extraction time,composite enzyme addition amount,and liquid-solid ratio for response surface optimization experiments,and then applied to the pilot extraction of P.heterophylla fibrous roots.[Results]Response surface analysis showed that all factors had a significant impact on the experimental indicators.The optimal extraction process conditions for polysaccharides from P.heterophylla fibrous roots were extraction time of 2.7 h,compound enzyme addition of 2.5%,and liquid-solid ratio of 32.The yield of polysaccharides from P.heterophylla fibrous roots was 4.83%.The water extraction process of P.heterophylla fibrous roots extraction pilot was used as the control group for response surface optimization of the pilot experiment.The optimization results showed that the extraction time was 3 h,the amount of composite enzyme added was 2.5%,and the liquid-solid ratio was 28.The polysaccharide yield was 4.75%,an increase of 4.63%compared to the control group.[Conclusions]This paper could provide feasibility for the innovation of enzy-matic hydrolysis technology for P.heterophylla fibrous roots and its workshop pilot practice application,as well as a reference for the industrial application of its medicinal resources.
文摘Since the 18th National Congress of the Communist Party of China,the country has established 21 Free Trade Pilot Zones(FTZs),achieving significant pioneering results in reform and opening up and creating a strong demonstrative effect nationwide.The basic experience from a decade of FTZs includes:adhering to the centralized and unified leadership of the CPC Central Committee;combining top-level design with encouragement of grassroots innovation;leveraging the distinct characteristics and strengths of FTZs to form a differentiated development pattern;maintaining the integration of opening up with domestic reforms;using openness to drive reforms;and organically combining openness with national security assurance.Under the current and future new circumstances,China’s FTZs face new challenges and tasks.In accordance with the directives of the 20th National Congress of the Communist Party of China,an enhancement strategy for the FTZs needs to be implemented.This involves the following:First,accurately understanding and responding to the changing situation to create strategic opportunities.Second,shifting paradigms to implement innovation-driven strategies,using the new development pattern concept to guide the reform experiments and construction of the FTZs.Third,granting more autonomy to FTZs for reforms,pursuing progress while maintaining stability,and solidly advancing the reform experiments in the FTZs.Fourth,orderly expanding the opening up of the service sector and cautiously advancing the internationalization of the renminbi.Fifth,promoting innovative development in trade to build a strong trade nation.Sixth,establishing synergy with bilateral FTZs,Belt and Road cooperation,and national diplomatic strategies to enhance the linkage effect.
文摘Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care.
文摘This manuscript presents a research proposal to investigate how hazardous attitudes among general aviation pilots influence pilot performance in aviation accidents. General aviation pilots train to maintain safe flying conditions, but accidents still occur, and human factors figure prominently among the causes of aviation accidents. The levels of hazardous attitudes among pilots may influence the likelihood of engaging in risky flight behaviors that can lead to accidents. This quantitative study aims to determine whether dangerous attitudes impact risk perception in general aviation pilots. The study will focus on two specific hazardous attitudes, “Anti-Authority” and Macho” behaviors. Among the hazardous attitudes identified by the Federal Aviation Administration (FAA), the two attitudes often stand out in accident investigations and pilot narratives. While all hazardous attitudes have inherent dangers, these two attitudes tend to be more frequently cited in accident reports and investigations. Despite rigorous training in safe flying conditions, general aviation accidents still transpire due to human factors. This research hypothesizes that the five attitudes from the hazardous attitude model, particularly Anti-Authority and Macho, significantly shape pilots’ risk perception. The insights from this study would benefit stakeholders, like the Aircraft Owners and Pilots Association (AOPA), Air Safety Institute, and aviation training programs, in creating training modules tailored to reduce such attitudes.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA01Z288)the National Natural Science Foundation of China (60702057)+2 种基金the National Science Fund for Distinguished Young Scholars (60725105)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the Fundamental Research Projects,Xidian University (JY10000901030)
文摘A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.
基金supported by the National Natural Science Foundation of China(61671176 61671173)the Fundamental Research Funds for the Center Universities(HIT.MKSTISP.2016 13)
文摘How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.
文摘Massive Multiple-Input-Multiple-Output(MIMO)is a promising technology to meet the demand for the connection of massive devices and high data capacity for mobile networks in the next generation communication system.However,due to the massive connectivity of mobile devices,the pilot contamination problem will severely degrade the communication quality and spectrum efficiency of the massive MIMO system.We propose a deep Monte Carlo Tree Search(MCTS)-based intelligent Pilot-power Allocation Scheme(iPAS)to address this issue.The core of iPAS is a multi-task deep reinforcement learning algorithm that can automatically learn the radio environment and make decisions on the pilot sequence and power allocation to maximize the spectrum efficiency with self-play training.To accelerate the searching convergence,we introduce a Deep Neural Network(DNN)to predict the pilot sequence and power allocation actions.The DNN is trained in a self-supervised learning manner,where the training data is generated from the searching process of the MCTS algorithm.Numerical results show that our proposed iPAS achieves a better Cumulative Distribution Function(CDF)of the ergodic spectral efficiency compared with the previous suboptimal algorithms.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62071246,61771252,61861039,and 61427801in part by the National Key Research and Development Program of China under Grants 2020YFB1806608 and 2018YFC1314903+2 种基金in part by the Jiangsu Province Special Fund Project for Transformation of Scientific and Technological Achievements under Grant BA2019058in part by the Major Natural Science Research Project of Jiangsu Higher Education Institutions under Grant 18KJA510005in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grants SJKY190740 and KYCX200709.
文摘In this paper,the spectral efficiency(SE)of an uplink hardware-constrained cell-free massive multi-input multi-output(MIMO)system with maximal ratio combining(MRC)receiver filters in the context of superimposed pilots(SPs)is investigated.Tractable closed-form SE expressions for the considered system are derived,which share us with opportunities to explore the impacts of the hardware quality coefficient,the length of coherence interval,and the power balance factor between pilot and data signals.Numerical results indicate that the achievable SE deteriorates as the hardware quality decreases and is more susceptible to the hardware impairments at the user equipments(UEs).Besides,we observe that SPs outperform regular pilots(RPs)in terms of SE and this performance gain is heavily dependent on the values of power balance factor and coherence interval.However,the superiorities of SPs over RPs have vanished when severe hardware imperfections are considered.
文摘The establishment of Shanghai Pilot Free Trade Zone provides many possibilities for China's economic construction. This paper made a comparative analysis on investment management system of Shanghai Pilot Free Trade Zone and traditional investment management system,discussed achievements and problems of reform of investment management system of Shanghai Pilot Free Trade Zone,and finally came up with pertinent policy recommendations.
基金supported by the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK19CF002).
文摘Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.
文摘Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot symbols for channel estimation, introduces overhead and it is desirable to keep the number of pilot symbols as minimum as possible. This paper introduces a new tight bound for the number of pilots in channel estimation using adaptive scheme in OFDM systems. We calculate the minimum number of necessary pilots using two approaches. The first approach for the number of pilots is obtained based on Doppler frequency shift estimation and the second approach is acquired based on channel length estimation using second order statistics of received signal. Finally we obtain the tight bound for the number of pilots using attained values.
基金supported by National Natural Science Foundation of China(No.61871452)。
文摘Orthogonal time frequency space(OTFS)modulation has been proven to be superior to traditional orthogonal frequency division multiplexing(OFDM)systems in high-speed communication scenarios.However,the existing channel estimation schemes may results in poor peak to average power ratio(PAPR)performance of OTFS system or low spectrum efficiency.Hence,in this paper,we propose a low PAPR channel estimation scheme with high spectrum efficiency.Specifically,we design a multiple scattered pilot pattern,where multiple low power pilot symbols are superimposed with data symbols in delay-Doppler domain.Furthermore,we propose the placement rules for pilot symbols,which can guarantee the low PAPR.Moreover,the data aided iterative channel estimation was invoked,where joint channel estimation is proposed by exploiting multiple independent received signals instead of only one received signal in the existing scheme,which can mitigate the interference imposed by data symbols for channel estimation.Simulation results shows that the proposed multiple scattered pilot aided channel estimation scheme can significantly reduce the PAPR while keeping the high spectrum efficiency.
基金Supported by Beijing Natural Science Foundation(4194087)。
文摘Pilot contamination can bring up a grave impairment in the performance of massive multiple-input multiple-output(MIMO)systems.In this paper,an improved time-shifted pilot scheme is proposed to reduce the pilot contamination,where orthogonal pilots are employed in the same group to eliminate the residual intragroup interference existing in the original time-shifted pilot scheme.Meanwhile,the rigorous closed-form expressions of both downlink and uplink transmission rates with a finite number of antennas are derived,and it is shown that the intra-group interference can be completely eliminated by the proposed scheme.Simulation results demonstrate that both downlink and uplink transmission rates are significantly improved by employing the proposed scheme.
基金supported in part by the National Natural Science Foundation of China under Grants 61971176 and 61901156in part by the Anhui Provincial Natural Science Foundation under Grant 2008085QF281in part by the Fundamental Research Fund for the Central Universities of China under Grant JZ2021HGTB0081。
文摘This paper proposes a novel joint channel estimation and beamforming scheme for the massive multiple-input-multiple-output(MIMO)frequency-division duplexing(FDD) wireless legitimate surveillance system. With the proposed scheme,the monitor with the full duplex capability realizes the proactive eavesdropping of the suspicious link by leveraging the pilot attack approach. Specifically, exploiting the effective eavesdropping rate and the mean square error as performance metrics and setting a total power budget at the training and transmission phases,while guaranteeing the information from suspicious source can be successfully decode, joint pilot design,power allocation and beamforming strategy are formulated as optimization problems for the two objective functions: MSE and effective eavesdropping rate. A closed-form expression of the optimal pilot with the limited length can be obtained via the channel correlation. The optimal power problem at the training phase can be solved by a simple bisection method. Then,based on the obtained imperfect estimated channel,the jamming beamforming at monitor optimization algorithm is proposed by utilizing the convex Semidefinite Programming approach to maximize the effective eavesdropping rate. Numerical results show that the proposed joint pilot design, power allocation and beamforming optimization scheme can improve the surveillance performance of the legitimate monitor as compared to the existing passive eavesdropping and jamming-assisted eavesdropping.
基金The National Natural Science Foundation ofChina(No.60332030)The National High Technology Research and Development Pro-gram of China(863Program)(No.2003AA123310)
文摘Channel estimation using pilot is common used in OFDM system.The pilot is usually time division multiplexed with the informative sequence.One of the main drawbacks is bandwidth losing.In this paper,a new method was proposed to perform channel estimation in OFDM system.The pilot is arithmetically added to the output of OFDM modulator.Receiver uses the hidden pilot to get an accurate estimation of the channel.Then pilot is removed after channel estimation.The Cramer-Rao lower bound for this method was deprived.The performance of the algorithm is then shown.Compared with traditional methods,the proposed algorithm increases the bandwidth efficiency dramatically.