To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and...To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry.展开更多
This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduce...This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.展开更多
Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenie...Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.展开更多
In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1)...In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.展开更多
The high concentrations of Fe^(2+) and Mn^(2+) in acid mine drainage make it difficult and expensive to treat.It is urgent that we find a cheap and efficient adsorption material to treat Fe^(2+) and Mn^(2+).As a solid...The high concentrations of Fe^(2+) and Mn^(2+) in acid mine drainage make it difficult and expensive to treat.It is urgent that we find a cheap and efficient adsorption material to treat Fe^(2+) and Mn^(2+).As a solid waste in mining areas,coal gangue occupies a large area and pollutes the surrounding environment during the stacking process.Developing a method of resource utilization is thus a research hotspot.In this study,we modified spontaneous combustion gangue using NaOH,NaCl,and HCl by chemically modifying the minerals.We determined the optimal conditions for treating Fe^(2+) and Mn^(2+) in acid mine drainage with spontaneous combustion gangue and modified coal gangue using the single factor test method.Based on results of the static test,two dynamic test columns,column No.1(spontaneous combustion gangue)and column No.2(NaOH modified spontaneous combustion gangue),were constructed,and the repair effects of acid mine drainage were compared and analyzed using dynamic experiments.The results show that overall,NaOH modified spontaneous combustion gangue is the most efficient at removing the Fe^(2+) and Mn^(2+) in acid mine drainage.The optimal conditions for NaOH modification are an NaOH concentration of 3 mol/L,a liquid to solid ratio of 2 L/kg,and a modification time of 8 h.The overall efficiency of column No.2 at removing Fe^(2+) and Mn^(2+) from acid mine drainage is better than that of column No.1.Among them,the average removal efficiency of Fe^(2+)and Mn^(2+) from acid mine drainage in column No.2 were 97.73%and 44.82%,respectively.The above results show that NaOH modified spontaneous combustion gangue is a good adsorbent,which has application potential in wastewater remediation,as it can achieve the purpose of“treating dust with waste”.展开更多
This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC...This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC2O4·2H2O,MgO2,Al2O3 powder,and Al powder as raw materials by combustion synthesis.The results indicate that with the maximum MgC2O4·2H2O addition of 33.34 mass%,the prepared powder contains 1.17 mass%of carbon and carbon distributes among spinel grains.The MgAl_(2)O_(4)spinel shows both granular and rod-like morphologies.The granular MgAl_(2)O_(4)spinel is generated from mutual diffusion between MgO and Al2O3;while the rod-like MgAl_(2)O_(4)spinel is mainly formed by the vapor-solid growth mechanism from Mg vapor and Al2O3.展开更多
Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite ma...Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite material characterized by vertical flame spread and different inside/outside combustion behaviors. In addition, major factors that affect the flame spread outside the building include the combustion characteristics of materials used as well as air flow around a skyscraper. However, since it is highly difficult to analyze and forecast the air flow from a fire engineering viewpoint, an investigation of the flame spread characteristics of exterior walls of a building depends primarily on the combustion characteristics of materials. Hence, this study examined, using ISO 13785-2 testing method, the temperature changes and vertical flame spread behaviors of one of the finishing materials for exterior walls--(generic & fire-resistant) aluminium panels by a real-scale combustion experiment. According to the results of real-scale experiment, the maximum heat temperature of 987.7 ℃ was recorded seven minutes after the fire test was initiated while the fire-resistant aluminium panels showed the maximum heat temperature of 850.2℃ after exposed for approximately 12 min. The vertical flame spread properties put more emphasis on the time required to reach the maximum temperature rather than its magnitude and there was a five minutes difference between the materials.展开更多
在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质...在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质的燃烧特性试验研究。结果表明:该生物质直燃耦合系统运行稳定可靠;CFB锅炉在掺烧木屑颗粒燃料时,随着掺烧比的增加,混合燃料的飞灰含碳量下降、CO排放量降低,混合燃料的燃尽性得以改善;掺烧后经过锅炉燃烧配风优化,锅炉NOx排放量比纯烧原煤排放量略有降低。试验典型工况污染物测试表明:掺入木屑颗粒燃料后,锅炉烟气二噁英排放量为0.0088 ng TEQ/m^(3)(标准工况,φ(O_(2))=11%,下同),飞灰中二噁英排放量为0.0206 ng TEQ/m^(3);飞灰中重金属及P、As、Se等有害微量元素排放值总量为32.121mg/L;底渣中重金属及P、As、Se等有害微量元素排放值总量为3.918 mg/L,烟气和飞灰中的二噁英和重金属等有害物质排放均满足国家环保标准排放限值。展开更多
基金The financial supports received from National Natural Science Foundation of China (U20B6005, 22178378, and 22127812)
文摘To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry.
基金This paper is an introduction of a key laboratory of SP.
文摘This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.
文摘Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.
文摘In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.
基金This work was supported by the National Natural Science Foundation of China(Nos.51304114,41672247)the Scientific Research Fund of the Liaoning Provincial Education Department(No.LJ2017FAL016).
文摘The high concentrations of Fe^(2+) and Mn^(2+) in acid mine drainage make it difficult and expensive to treat.It is urgent that we find a cheap and efficient adsorption material to treat Fe^(2+) and Mn^(2+).As a solid waste in mining areas,coal gangue occupies a large area and pollutes the surrounding environment during the stacking process.Developing a method of resource utilization is thus a research hotspot.In this study,we modified spontaneous combustion gangue using NaOH,NaCl,and HCl by chemically modifying the minerals.We determined the optimal conditions for treating Fe^(2+) and Mn^(2+) in acid mine drainage with spontaneous combustion gangue and modified coal gangue using the single factor test method.Based on results of the static test,two dynamic test columns,column No.1(spontaneous combustion gangue)and column No.2(NaOH modified spontaneous combustion gangue),were constructed,and the repair effects of acid mine drainage were compared and analyzed using dynamic experiments.The results show that overall,NaOH modified spontaneous combustion gangue is the most efficient at removing the Fe^(2+) and Mn^(2+) in acid mine drainage.The optimal conditions for NaOH modification are an NaOH concentration of 3 mol/L,a liquid to solid ratio of 2 L/kg,and a modification time of 8 h.The overall efficiency of column No.2 at removing Fe^(2+) and Mn^(2+) from acid mine drainage is better than that of column No.1.Among them,the average removal efficiency of Fe^(2+)and Mn^(2+) from acid mine drainage in column No.2 were 97.73%and 44.82%,respectively.The above results show that NaOH modified spontaneous combustion gangue is a good adsorbent,which has application potential in wastewater remediation,as it can achieve the purpose of“treating dust with waste”.
文摘This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC2O4·2H2O,MgO2,Al2O3 powder,and Al powder as raw materials by combustion synthesis.The results indicate that with the maximum MgC2O4·2H2O addition of 33.34 mass%,the prepared powder contains 1.17 mass%of carbon and carbon distributes among spinel grains.The MgAl_(2)O_(4)spinel shows both granular and rod-like morphologies.The granular MgAl_(2)O_(4)spinel is generated from mutual diffusion between MgO and Al2O3;while the rod-like MgAl_(2)O_(4)spinel is mainly formed by the vapor-solid growth mechanism from Mg vapor and Al2O3.
文摘Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite material characterized by vertical flame spread and different inside/outside combustion behaviors. In addition, major factors that affect the flame spread outside the building include the combustion characteristics of materials used as well as air flow around a skyscraper. However, since it is highly difficult to analyze and forecast the air flow from a fire engineering viewpoint, an investigation of the flame spread characteristics of exterior walls of a building depends primarily on the combustion characteristics of materials. Hence, this study examined, using ISO 13785-2 testing method, the temperature changes and vertical flame spread behaviors of one of the finishing materials for exterior walls--(generic & fire-resistant) aluminium panels by a real-scale combustion experiment. According to the results of real-scale experiment, the maximum heat temperature of 987.7 ℃ was recorded seven minutes after the fire test was initiated while the fire-resistant aluminium panels showed the maximum heat temperature of 850.2℃ after exposed for approximately 12 min. The vertical flame spread properties put more emphasis on the time required to reach the maximum temperature rather than its magnitude and there was a five minutes difference between the materials.
文摘在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质的燃烧特性试验研究。结果表明:该生物质直燃耦合系统运行稳定可靠;CFB锅炉在掺烧木屑颗粒燃料时,随着掺烧比的增加,混合燃料的飞灰含碳量下降、CO排放量降低,混合燃料的燃尽性得以改善;掺烧后经过锅炉燃烧配风优化,锅炉NOx排放量比纯烧原煤排放量略有降低。试验典型工况污染物测试表明:掺入木屑颗粒燃料后,锅炉烟气二噁英排放量为0.0088 ng TEQ/m^(3)(标准工况,φ(O_(2))=11%,下同),飞灰中二噁英排放量为0.0206 ng TEQ/m^(3);飞灰中重金属及P、As、Se等有害微量元素排放值总量为32.121mg/L;底渣中重金属及P、As、Se等有害微量元素排放值总量为3.918 mg/L,烟气和飞灰中的二噁英和重金属等有害物质排放均满足国家环保标准排放限值。