期刊文献+
共找到54,785篇文章
< 1 2 250 >
每页显示 20 50 100
Personal Thermal Management by Radiative Cooling and Heating 被引量:2
1
作者 Shidong Xue Guanghan Huang +3 位作者 Qing Chen Xungai Wang Jintu Fan Dahua Shou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期225-267,共43页
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea... Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications. 展开更多
关键词 Personal thermal management Radiative cooling and heating Thermal comfort Dynamic thermoregulation
下载PDF
Wettability Gradient-Induced Diode:MXene-Engineered Membrane for Passive-Evaporative Cooling 被引量:1
2
作者 Leqi Lei Shuo Meng +4 位作者 Yifan Si Shuo Shi Hanbai Wu Jieqiong Yang Jinlian Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期382-397,共16页
Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water mo... Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment. 展开更多
关键词 Passive-evaporative cooling MXene Electrospun membrane Wettability gradient DIODE
下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
3
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters 被引量:1
4
作者 Yinan Zhang Yinggang Chen +2 位作者 Tong Wang Qian Zhu Min Gu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期17-25,共9页
Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the... Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change. 展开更多
关键词 radiative cooling dielectric metasurfaces machine learning thermal emitters
下载PDF
Thin paints for durable and scalable radiative cooling 被引量:1
5
作者 Shanquan Liu Fei Zhang +3 位作者 Xingyu Chen Hongjie Yan Wei Chen Meijie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期176-182,I0006,共8页
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra... Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications. 展开更多
关键词 Radiative cooling Heat dissipation Solar reflectance Thermal emittance Contact angle
下载PDF
A coupled thermo-mechanical peridynamic model for fracture behavior of granite subjected to heating and water-cooling processes 被引量:1
6
作者 Luming Zhou Zhende Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2006-2018,共13页
Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The... Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode. 展开更多
关键词 Peridynamics(PD) GRANITE Heating and cooling Damage and fracture Uniaxial compression
下载PDF
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 被引量:1
7
作者 Meng Lian Wei Ding +5 位作者 Song Liu Yufeng Wang Tianyi Zhu Yue-EMiao Chao Zhang Tianxi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期231-243,共13页
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fab... The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass. 展开更多
关键词 Transparent aerogel Cellulose nanofiber aerogel Delaminated gelation Thermal insulation Passive daytime radiative cooling
下载PDF
Application and prospect of the fluid cooling system of solar arrays for probing the Sun 被引量:1
8
作者 Kangli Bao Xiaofei Zhu +5 位作者 Jianchao Feng Liu Liu Xiaofeng Zhang Zhiming Cai Jun Lin Yonghe Zhang 《Astronomical Techniques and Instruments》 CSCD 2024年第1期62-70,共9页
The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,... The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation. 展开更多
关键词 In situ detection of solar eruption Solar array cooling system Pumped fluid loop High heat flux dissipation
下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
9
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
下载PDF
Wellbore-heat-transfer-model-based optimization and control for cooling downhole drilling fluid
10
作者 Chao Wang He Liu +3 位作者 Guo-Wei Yu Chen Yu Xian-Ming Liu Peng Huang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1955-1968,共14页
To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling techno... To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible. 展开更多
关键词 DRILLING cooling Influencing factors Analysis OPTIMIZATION Control
下载PDF
Rational design and synthesis of Cr_(1-x)Te/Ag_(2)Te composites for solid-state thermoelectromagnetic cooling near room temperature
11
作者 孙笑晨 谢承昊 +3 位作者 陈思汗 万京伟 谭刚健 唐新峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期580-586,共7页
Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single pha... Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single phase materials except previously reported hexagonal Cr_(1-x)Te half metal where a relatively high magnetic entropy change(-△S_(M))of~2.4 J·kg^(-1)·K^(-1)@5 T and a moderate thermoelectric figure of merit(ZT)of~1.2×10^(-2)@300 K are simultaneously recorded.Herein we aim to increase the thermoelectric performance of Cr_(1-x)Te by compositing with semiconducting Ag_(2)Te.It is discovered that the in-situ synthesis of Cr_(1-x)Te/Ag_(2)Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition.Specifically,at elevated temperatures(T>800 K),Cr_(1-x)Te has a much lower deformation energy than Ag_(2)Te and tends to become more Cr-deficient by capturing Te from Ag_(2)Te.Therefore,Ag is insufficiently reacted and as a metal it deteriorates ZT.We then rationalize the synthesis of Cr_(1-x)Te/Ag_(2)Te composites by ex-situ mix of the pre-prepared Cr_(1-x)Te and Ag_(2)Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa.We show that by compositing with 7 mol%Ag_(2)Te,the Seebeck coefficient of Cr_(1-x)Te is largely increased while the lattice thermal conductivity is considerably reduced,leading to 72%improvement of ZT.By comparison,-△S_(M)is only slightly reduced by 10%in the composite.Our work demonstrates the potential of Cr_(1-x)Te/Ag_(2)Te composites for thermoelectromagnetic cooling. 展开更多
关键词 thermoelectromagnetic cooling thermoelectric MAGNETOCALORIC composite chromium telluride
下载PDF
Limited Sea Surface Temperature Cooling Due to the Barrier Layer Promoting Super Typhoon Mangkhut(2018)
12
作者 Huipeng WANG Jiagen LI +8 位作者 Junqiang SONG Liang SUN Fu LIU Han ZHANG Kaijun REN Huizan WANG Chunming WANG Jinrong ZHANG Hongze LENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2156-2172,共17页
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)... This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018. 展开更多
关键词 sea surface cooling mixed-layer depth barrier layer TYPHOON
下载PDF
Impact of cooling rate on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy
13
作者 JIANG Ke-da LIAO Ze-xin +2 位作者 CHEN Ming-yang LIU Sheng-dan TANG Jian-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2225-2236,共12页
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ... The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling. 展开更多
关键词 7xxx aluminum alloy cooling rate exfoliation corrosion microstructure
下载PDF
A review on the cooling of energy conversion and storage systems using thermoelectric modules
14
作者 Amirreza IJADI Mehran Rajabi ZARGARABADI +1 位作者 Saman RASHIDI Amir Mohammad JADIDI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1998-2026,共29页
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio... Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell. 展开更多
关键词 cooling PHOTOVOLTAIC lithium-ion batteries fuel cell electronic equipment thermoelectric modules
下载PDF
Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China
15
作者 Limei YANG Jun GE +4 位作者 Yipeng CAO Yu LIU Xing LUO Shiyao WANG Weidong GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2259-2275,共17页
Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter d... Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming. 展开更多
关键词 urban trees cooling efficiency China's cities EVAPOTRANSPIRATION SUMMER hot days
下载PDF
Effect of solidification cooling rate on microstructure and tribology characteristics of Zn-4Si alloy
16
作者 F.Akbari M.Golkaram +5 位作者 S.Beyrami G.Shirazi K.Mantashloo R.Taghiabadi M.Saghafi Yazdi I.Ansarian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期362-373,共12页
The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing th... The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample. 展开更多
关键词 zinc-silicon alloy primary silicon solidification cooling rate TRIBOLOGY sliding wear
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
17
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
Effects of cooling rate on the microstructure and properties of magnesium alloy-a review
18
作者 Huisheng Cai Nannan Zhang +4 位作者 Liang Liu Juan Su Yuguang Li Yu Kang Feng Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3094-3114,共21页
Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The prepa... Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected. 展开更多
关键词 Magnesium alloy cooling rate Microstructure Mechanical properties Corrosion resistance Oxidation resistance
下载PDF
Exploring the effect of cooling rate on non-isothermal crystallization of copolymer polypropylene by fast scanning calorimetry
19
作者 Yang Liao Ye-yuan Hu +4 位作者 Kosuke Ikeda Ryoji Okabe Rui-fen Wu Ryota Ozaki Qing-yan Xu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期379-386,共8页
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool... Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study. 展开更多
关键词 cooling rate crystallization temperature CRYSTALLINITY non-isothermal crystallization kinetics FSC copolymer polypropylene
下载PDF
Hand Cooling Enhances the Proprioceptive Drift during Rubber Hand Illusion
20
作者 Masanori Sakamoto Yuta Akaike +1 位作者 Kazuya Tatsumi Hirotoshi Ifuku 《Journal of Behavioral and Brain Science》 2024年第7期210-226,共17页
Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investi... Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of a rubber hand is temporarily induced. It was shown that external and continuous cooling of the palm enhanced the RHI, suggesting an association between altered the autonomic nervous system regulation and altered the sense of ownership of a specific limb. Purpose: To investigate whether artificially cooling the entire hand for a short period affects the magnitude of the illusion. Methods: Participants immersed their entire hand in cool, cold, or warm water for 1 min before the RHI procedure. Results: We found that cooling the entire hand enhanced the proprioceptive drift during the RHI but not the subjective feeling of ownership. In contrast, warming and intense cooling of the entire hand did not affect the RHI strength. Conclusion: Our results suggest that transient and moderate cooling of the entire hand was sufficient in enhancing the illusory disembodiment of one’s own hand. 展开更多
关键词 Hand Temperature cooling Rubber Hand Illusion OWNERSHIP Proprioceptive Drift
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部