期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Pinning Center Morphology in HTS with Order-of-Magnitude Increase in J_c and B_pin Compared to Columnar Pinning
1
作者 R.Weinstein A.Gandini +1 位作者 R.Sawh D.Parks 《Tsinghua Science and Technology》 SCIE EI CAS 2003年第3期266-279,共14页
The motivation for continuous columnar pinning centers has been to provide maximum Upin. It has been assumed that this provides the best Jc and Bpin. Limitations on Jc and Spin observed for columnar pinning have been ... The motivation for continuous columnar pinning centers has been to provide maximum Upin. It has been assumed that this provides the best Jc and Bpin. Limitations on Jc and Spin observed for columnar pinning have been attributed to degradation of the order parameter and Tc. We examine columnar pinning by ionic damage and conclude instead that geometrical effects of columnar pinning on percolation path and on the number of pinning centers are the dominant limitations of columnar pinning, leading to a limit of Bpin- 4 T. Evidence suggests that multiple-in-line-defects (MILD) are far better suited to increase Jc and Bpin. The morphology of MILD pinning is reviewed. Ion energy loss per unit distance, Se, is found to be most promising in a regime almost diametrically opposite to that sought to maximize Upin. We expect Jc - 106 A/cm2 and Bpin > 40T from MILD pinning, despite sharply decreased Upin. Experimental confirmation is proposed. 展开更多
关键词 improved pinning high critical current high field pinning ionic pinning centers columnar pinning limits
原文传递
Effect of niobium substitution on microstructures and thermal stability of TbCu7-type Sm-Fe-N magnets 被引量:3
2
作者 Guiyong Wu Hongwei Li +6 位作者 Dunbo Yu Kuoshe Li Wenlong Yan Chao Yuan Liang Sun Yang Luo Kun Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期281-286,共6页
This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of... This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution. 展开更多
关键词 Magnetic properties Thermal stability Grain size pinning field Irreversible flux loss Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部