Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and...Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.展开更多
The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we develope...The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions.展开更多
Chitosan oligosaccharides(COSs)are the main degradation products from chitosan or chitin and have been reported to induce resistance to diseases in herbaceous plants like cucumber and Arabidopsis.Concomitantly,pine wi...Chitosan oligosaccharides(COSs)are the main degradation products from chitosan or chitin and have been reported to induce resistance to diseases in herbaceous plants like cucumber and Arabidopsis.Concomitantly,pine wilt disease(PWD)is a devastating disease of conifer tree species.Here,we hypothesized that COSs induce plant resistance gene(PRG)expression in the woody plant Masson pine,Pinus massoniana.COSs were inoculated into P.massoniana seedlings and the BGISEQ-500 platform was used to generate transcriptomes from COSs-treated P.massoniana and control seedlings.A total of 501 differentially expressed genes(DEGs)were identified by comparing the treatment and control groups.A total of 251(50.1%)DEGs were up-regulated in the treatment relative to the control seedlings and 250(49.9%)were down-regulated.Inoculation of COSs induced the expression of 31 PRGs in P.massoniana seedlings and the relative expression levels of six of the PRGs were verified by RT-qPCR.This is the first study to demonstrate that COS induces the expression of PRGs in a tree species.These results provide important insights into the function of COSs and further the prospects of developing a COS-based immune inducer for controlling PWD.展开更多
Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al...Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.展开更多
The features of branching and growth studied included height, diameter at breast height (DBH), total number of branches, annual height growth, annual branch elongation in the year of elongating, annual branch number f...The features of branching and growth studied included height, diameter at breast height (DBH), total number of branches, annual height growth, annual branch elongation in the year of elongating, annual branch number for four consecutive years, diameter of branches of different ages, and diameter of stem where branch-whorl originates. For features of total growth and overall branching, no significant differences were found between families, except for DBH. For annual features, no significant differences were found in annual stem height growth, annual branch elongation in the year of elongation and diameter of branches. In the last four years, differences in number of branches were not significant in the first two years but were significant in the last two year; differences in stem diameter where branch-whorls grow were significant for the four consecutive years. Trend of annual growth and branching features of families can be divided into three types as increasing type, stable type and fluctuating type. Most of families have an increasing type with respect of annual height growth and annual branch elongation, while most families belong to a fluctuating type with annual branch number. The results indicated that in the fifth year after planted in seedling seed orchard, differences between families were mostly insignificant. This result may have two main explanations: one is the growth rhyme in early ages of Masson pine, the other one is the complex paternal components to form the open-pollinated families. Family selection seemed to be not useful based on the result. It is suggested to select some of families in the nursery instead of to use all the families when establishing seedling seed orchards with open-pollinated families from plus-trees.展开更多
Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume...Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equa- tion exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with in- creasing tree height.展开更多
Oxygen sensing technology was employed to study the rapid methods for seed vigor assessment of Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana). Firstly, seeds of five lots were performed u...Oxygen sensing technology was employed to study the rapid methods for seed vigor assessment of Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana). Firstly, seeds of five lots were performed using accelerated aging (AA) into three vigor levels. Then, four oxygen sensing indices, including increased metabolism time (IMT), oxygen metabolism rate (OMR), critical oxygen pressure (COP), relative germination time (RGT) and the control indiees such as labora- tory germination indices, dehydrogenase activity (DA), and electrical conductivity (EC) were analyzed by the tests of 15 samples. The results of correlation analysis between these indices and field emergence per- formances based on two-year and two-spot data showed that RGT and OMR should be indicated as the optimal oxygen sensing indices to rap- idly and automatically evaluate seed vigor of Chinese fir and Masson pine, respectively. On the basis, one-variable linear regression equations were built to forecast their field emergence performances by the two oxygen sensing indices.展开更多
AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated wi...AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic 'DNA ladder'was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.展开更多
Thinning is an important activity employed in forest management. To date, studies have mainly focused on the effects of thinning on the growth of trees during the same thinning period. In this study, plantation Pinus ...Thinning is an important activity employed in forest management. To date, studies have mainly focused on the effects of thinning on the growth of trees during the same thinning period. In this study, plantation Pinus massoniana Lamb. near maturity were thinned at varying intensities and an economically important species, Cinnamomum cassia Presl., was planted beneath the thinned canopy. The aim of the study was to explore the effects of the extent of thinning on the essential oil content and its components of C. cassia in different parts of the plant, as well as the economic feasibility of the P. massoniana-C.cassia management model. Thinning significantly reduced the oil yield in the bark and branches of C. cassia, but hardly impacted the oil yield from C. cassia leaves compared with pure C. cassia forest(CK). Among the different thinning treatments, both light(T.4) and extensive(T.1)thinning reduced the oil yield of C. cassia bark and new branches. The concentrations of the main aldehydes differed in different parts of the plant and were affected by the extent of thinning. The influence on cinnamaldehyde in the bark was minor, but was much greater in the branches and leaves. Both the oil yield and content of cinnamaldehyde showed that moderate(T.3) thinning was more favorable than other thinning models. These results not only provide a potentially promising model for the transformation of low-yield artificial pure forests of P. massoniana in the future, but also offer a reference for the management of artificial mixed stands.展开更多
This study addresses the increasing demand for large-diameter production timber,and considers the time and space variability of half-sib families of Pinus massoniana.Height,diameter at breast height(DBH)and timber vol...This study addresses the increasing demand for large-diameter production timber,and considers the time and space variability of half-sib families of Pinus massoniana.Height,diameter at breast height(DBH)and timber volume of 440 open-pollinated half-sib progeny families were investigated in 14 progeny trials in different years and production regions.An evaluation of the genetic variation of all half-sib families was carried out during the sustainable rapid growth period and individual volumes were characterized as a major index.ANOVA analysis showed that there was considerable variance in the growth traits of most families in different years and on different sites.The variations caused by temporal and spatial changes of the mating system required three selection methods for analysis.The results show that there were differences among the heritabilities of different growth traits by different halfsib progenies.Average heritability values of height,DBH and volume were 0.33,0.34 and 0.36,respectively.Fortyfive superior families were selected in every progeny test,12 were selected in progeny trials by different years and five in different habitat progeny trials.Three superior families(Gui GC553A,Gui GC414A and Gui GC431A)were selected,although in different years and production regions.The genetic gains of timber volume of these selected r families ranged from 1.20 to 47.00%,which could provide a foundation for superior wood property selection and serve as material for seed improvement and extension in surrounding areas.展开更多
Environmental heterogeneity is a constant presence in the natural world that significantly affects plant behavior at a variety of levels of complexity. In order to estimate the spatial pattern of fine root biomass in ...Environmental heterogeneity is a constant presence in the natural world that significantly affects plant behavior at a variety of levels of complexity. In order to estimate the spatial pattern of fine root biomass in the Three Gorges Reservoir Area, the spatial heterogeneity of fine root biomass in the upper layer of soils (0-10 cm) in three Mas- son pine (Pinus massoniana) stands in the Three Gorges Reservoir Area, China, was studied in 30 m x 30 m plots with geostatistical analysis. The results indicate that 1) both the live and dead fine root biomass of stand 2 were less than those of other stands, 2) the spatial variation of fine roots in the three stands was caused together by structural and ran- dom factors with moderate spatial dependence and 3) the magnitude of spatial heterogeneity of live fine roots ranked as: stand 3 〉 stand 1 〉 stand 2, while that of dead fine roots was similar in the three stands. These findings suggested that the range of spatial autocorrelation for fine root biomass varied considerably in the Three Gorges Reservoir Area, while soil properties, such as soil bulk density, organic matter and total nitrogen, may exhibit great effect on the spatial distribution of fine roots. Finally, we express our hope to be able to carry out further research on the quantitative relation- ship between the spatial heterogeneous patterns of plant and soil properties.展开更多
Barks of Pinus massoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity a...Barks of Pinus massoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity and conductivity. The acidity of the inner and outer barks from the polluted sites was significantly higher than those from the clean site, suggesting that the acidity of the bark occurred in concurrent with the air pollution. The significant lower pH values of the outer bark than the inner bark collected from all sites indicated that the outer bark was more sensitive than the inner bark in response to acid pollution, implying that the outer bark is more preferable when used as indication of atmospheric acid pollution. The conductivities of the inner barks differed significantly among the three sites, with higher values at the clean site. However, the significant differences were not observed among these sites. Furthermore, the pH values for the inner and outer barks were not correlated with the conductivity, which did not coincide with some other studies.展开更多
When pine trees are invaded by pine wilt diseases, the severely infected pine trees will die and fall down, or they will be removed when found to be damaged by the disease. It gives rise to the invasion of other speci...When pine trees are invaded by pine wilt diseases, the severely infected pine trees will die and fall down, or they will be removed when found to be damaged by the disease. It gives rise to the invasion of other species in these empty niches originally oc- cupied by pine trees, i.e., competing surrounding trees or understory shrubs will invade the empty niches during the following years. As a result, the spatial distribution and pattern of the main tree species in a pine forest will change, and a niche variety in the main population will occur. In the end, the direction of the succession and restoration of the pine forest ecosystem will be affected. In our study, a Pinus massoniana forest with the dominant shrub, Pleioblastus amarus, was invaded by pine wood nematode and was clear cut. Selecting this community as our research object, we studied the effect of the invasion of the pine wood nematode on the growth of the dominant shrub, P. amarus, in this Pinus massoniana forest. Our results show that, after the attacked pine trees were removed, the niche was occupied by Pleioblastus amarus and other shrubs, which benefited the growth ofP. amarus to its climax. Growth of P. amarus at the climax stage was greater compared with the unhealthy pine forest and the control group.展开更多
Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-trea...Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.展开更多
Geranylgeranyl pyrophosphate synthetase(GGPPS) has gained increasing attention as a key enzyme in terpene analysis.We designed specific primers based on plant GGPPS homologs and used reverse transcription polymerase c...Geranylgeranyl pyrophosphate synthetase(GGPPS) has gained increasing attention as a key enzyme in terpene analysis.We designed specific primers based on plant GGPPS homologs and used reverse transcription polymerase chain reaction(RT-PCR) to obtain and identify Pin GGPPS,a GGPPS gene sequence from Pinus massoniana,using bioinformatics tools.Quantitative PCR analysis of Pin GGPPS expression levels in roots,pine needles,immature stems,and semilignified stems from 6-month-old P.massoniana showed that expression levels of Pin GGPPS were highest in pine needles,followed by immature stems and semilignified stems,and lowest in roots.When we examined the correlation between Pin GGPPS gene expression levels and resin productivity in 20 adult plants for 28 successive days,Pin GGPPS expression levels presented a substantially linear distribution when plotted against their corresponding resin yields.In summary,we characterized the gene Pin GGPPS for the first time in P.massoniana,and established a correlation between Pin GGPPS gene expression levels and resin productivity,suggesting the importance of theory and production practice for P.massoniana.展开更多
Pine wilt disease(PWD)is a devastating disease affecting the growth of Pinus massoniana,often leading to withering and death.To reveal the changes involved during disease progression,we investigated the mRNA expressio...Pine wilt disease(PWD)is a devastating disease affecting the growth of Pinus massoniana,often leading to withering and death.To reveal the changes involved during disease progression,we investigated the mRNA expression profile of P.massoniana infested by Bursaphelenchus xylophilus.The infestation resulted in the downregulation of genes involved in interactions with pathogenic pathways such as disease resistance gene,CC-NBS-LRR resistancelike protein,and the gene encoding a putative nematode resistance protein.Increased infestation pressure(number of nematodes inoculated)caused a continuous decline in the gene expression of stem samples.An infestation of P.massoniana also resulted in a pathway enrichment of genes involved in phenylpropanoid metabolism and flavonoid biosynthesis,which in turn reduced the levels of total phenols and total flavonoids.A downregulation of auxin responsive family protein was observed in infested samples,which resulted in a suppression of plant growth.Thus,upon B.xylophilus infestation,a downregulation of genes associated with the recognition of pathogens,PWD resistance,and growth regulation was observed in P.massoniana,together with a decrease in the levels of phytoalexinlike secondary substances,all of which resulted in withering and ultimately death of P.massoniana.展开更多
The ecological effects of eucalypt plantations(EPs) have garnered increasing attention.To understand their effect on soil quality at a landscape scale,and to determine whether soil quality parameters differ due to d...The ecological effects of eucalypt plantations(EPs) have garnered increasing attention.To understand their effect on soil quality at a landscape scale,and to determine whether soil quality parameters differ due to different stand types,we evaluated soil characteristics in twenty-one groups of EPs,Pinus massoniana Lamb.plantations(PMPs) and natural broadleaved forests(NBFs)across Guangdong Province,China.Both the physical characteristics of soil hydrology and the properties of soil nutrients in A and B horizons were determined.Results showed that,compared to NBFs,EPs and PMPs produced a shallower litter layer,reduced canopy density,higher soil bulk density,significantly lower total porosity,non-capillary porosity,total water volume,and hygroscopic water in the A horizon(P〈0.05).Moreover,total N,available K,and soil organic carbon(SOC) in EPs and PMPs were significantly lower than in NBFs.EPs and PMPs did not differ significantly in N,P or K content,but PMPs had significantly lower SOC and boron in the A horizon than EPs.Low p H and poor capacity to buffer acidification generally occurred in all cover types.Both EPs and PMPs showed a decline in soil properties relative to NBFs,but EPs and PMPs exhibited no significant difference.These results indicate that actions are needed to ameliorate the potential negative effects on soil quality in forestry plantations.展开更多
Characterizing the mechanical properties of wood cell walls will lead to better understanding and optimization of modifications made to wood infected by the blue-stain fungi.In this study,in situ nanoindentation was u...Characterizing the mechanical properties of wood cell walls will lead to better understanding and optimization of modifications made to wood infected by the blue-stain fungi.In this study,in situ nanoindentation was used to characterize the mechanical properties of the cell walls of Pinus massoniana infected by blue-stain fungi at the cellular level.The results show that in situ nanoindentation is an effective method for this purpose and that blue-stain fungi penetrate wood structures and degrade wood cell walls,significantly reducing the mechanical properties of the cell walls.The method can also be used to evaluate and improve the properties of other wood species infected by blue-stain fungi.展开更多
Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess th...Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.展开更多
The physiological characteristics of trees change with age,suggesting that growth-related climate signals vary over time.This study aimed to clarify the impacts of different diameter classes on the chronological chara...The physiological characteristics of trees change with age,suggesting that growth-related climate signals vary over time.This study aimed to clarify the impacts of different diameter classes on the chronological characteristics of Pinus massoniana Lamb.and its response to climatic factors.Chronologies of P inus massoniana were established in small diameter(14.1 cm),middle diameter(27.3 cm),and large diameter(34.6 cm)trees according to dendrochronology.The results show that:(1)radial growth of different diameter classes had varied characteristics and climate sensitivities;(2)radial growth of small diameter trees was affected by climatic factors of the previous and the current year,while large diameter trees were mainly affected by climatic factors of the current year;and(3)precipitation and temperature were key factors that restricted the radial growth of small and large diameter trees,respectively.展开更多
基金funded by the National Natural Science Foundation of China(42107476,31901241)the China Postdoctoral Science Foundation(2020M682600)+1 种基金the China Postdoctoral International Exchange Fellowship Program(PC2021099)the Natural Science Foundation of Hunan Province(2021JJ41075).
文摘Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.
基金This study was supported by National Key Research and Development Program of China(No.2018YFA0605601)National Natural Science Foundation of China(No.42077417 and41671042).
文摘The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions.
文摘Chitosan oligosaccharides(COSs)are the main degradation products from chitosan or chitin and have been reported to induce resistance to diseases in herbaceous plants like cucumber and Arabidopsis.Concomitantly,pine wilt disease(PWD)is a devastating disease of conifer tree species.Here,we hypothesized that COSs induce plant resistance gene(PRG)expression in the woody plant Masson pine,Pinus massoniana.COSs were inoculated into P.massoniana seedlings and the BGISEQ-500 platform was used to generate transcriptomes from COSs-treated P.massoniana and control seedlings.A total of 501 differentially expressed genes(DEGs)were identified by comparing the treatment and control groups.A total of 251(50.1%)DEGs were up-regulated in the treatment relative to the control seedlings and 250(49.9%)were down-regulated.Inoculation of COSs induced the expression of 31 PRGs in P.massoniana seedlings and the relative expression levels of six of the PRGs were verified by RT-qPCR.This is the first study to demonstrate that COS induces the expression of PRGs in a tree species.These results provide important insights into the function of COSs and further the prospects of developing a COS-based immune inducer for controlling PWD.
基金supported by the National Natural Science Foundation of China (31570599 and 32171753)。
文摘Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.
基金This paper was a part of the National Key Project of Science and Technology on Masson Pine breeding during 1996-2000.
文摘The features of branching and growth studied included height, diameter at breast height (DBH), total number of branches, annual height growth, annual branch elongation in the year of elongating, annual branch number for four consecutive years, diameter of branches of different ages, and diameter of stem where branch-whorl originates. For features of total growth and overall branching, no significant differences were found between families, except for DBH. For annual features, no significant differences were found in annual stem height growth, annual branch elongation in the year of elongation and diameter of branches. In the last four years, differences in number of branches were not significant in the first two years but were significant in the last two year; differences in stem diameter where branch-whorls grow were significant for the four consecutive years. Trend of annual growth and branching features of families can be divided into three types as increasing type, stable type and fluctuating type. Most of families have an increasing type with respect of annual height growth and annual branch elongation, while most families belong to a fluctuating type with annual branch number. The results indicated that in the fifth year after planted in seedling seed orchard, differences between families were mostly insignificant. This result may have two main explanations: one is the growth rhyme in early ages of Masson pine, the other one is the complex paternal components to form the open-pollinated families. Family selection seemed to be not useful based on the result. It is suggested to select some of families in the nursery instead of to use all the families when establishing seedling seed orchards with open-pollinated families from plus-trees.
基金the National Biomass Modeling Program for Continuous Forest Inventory(NBMP-CFI) funded by the State Forestry Administration of China
文摘Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equa- tion exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with in- creasing tree height.
基金supported by National Natural Science Foundation of China (No. 30800890)
文摘Oxygen sensing technology was employed to study the rapid methods for seed vigor assessment of Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana). Firstly, seeds of five lots were performed using accelerated aging (AA) into three vigor levels. Then, four oxygen sensing indices, including increased metabolism time (IMT), oxygen metabolism rate (OMR), critical oxygen pressure (COP), relative germination time (RGT) and the control indiees such as labora- tory germination indices, dehydrogenase activity (DA), and electrical conductivity (EC) were analyzed by the tests of 15 samples. The results of correlation analysis between these indices and field emergence per- formances based on two-year and two-spot data showed that RGT and OMR should be indicated as the optimal oxygen sensing indices to rap- idly and automatically evaluate seed vigor of Chinese fir and Masson pine, respectively. On the basis, one-variable linear regression equations were built to forecast their field emergence performances by the two oxygen sensing indices.
文摘AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic 'DNA ladder'was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.
基金supported by the key technology for the management of artificial multi-layers plantation(2006–2009)the interspecific nitrogen transfer behaviors and root interaction mechanism of Eucalyptus and Dalbergia odorifera T.Chen(31460196)the key technology for the management of Strified Mixed Stands of Pinus massoniana and Cinnamomum cassia(2014–2024)
文摘Thinning is an important activity employed in forest management. To date, studies have mainly focused on the effects of thinning on the growth of trees during the same thinning period. In this study, plantation Pinus massoniana Lamb. near maturity were thinned at varying intensities and an economically important species, Cinnamomum cassia Presl., was planted beneath the thinned canopy. The aim of the study was to explore the effects of the extent of thinning on the essential oil content and its components of C. cassia in different parts of the plant, as well as the economic feasibility of the P. massoniana-C.cassia management model. Thinning significantly reduced the oil yield in the bark and branches of C. cassia, but hardly impacted the oil yield from C. cassia leaves compared with pure C. cassia forest(CK). Among the different thinning treatments, both light(T.4) and extensive(T.1)thinning reduced the oil yield of C. cassia bark and new branches. The concentrations of the main aldehydes differed in different parts of the plant and were affected by the extent of thinning. The influence on cinnamaldehyde in the bark was minor, but was much greater in the branches and leaves. Both the oil yield and content of cinnamaldehyde showed that moderate(T.3) thinning was more favorable than other thinning models. These results not only provide a potentially promising model for the transformation of low-yield artificial pure forests of P. massoniana in the future, but also offer a reference for the management of artificial mixed stands.
文摘This study addresses the increasing demand for large-diameter production timber,and considers the time and space variability of half-sib families of Pinus massoniana.Height,diameter at breast height(DBH)and timber volume of 440 open-pollinated half-sib progeny families were investigated in 14 progeny trials in different years and production regions.An evaluation of the genetic variation of all half-sib families was carried out during the sustainable rapid growth period and individual volumes were characterized as a major index.ANOVA analysis showed that there was considerable variance in the growth traits of most families in different years and on different sites.The variations caused by temporal and spatial changes of the mating system required three selection methods for analysis.The results show that there were differences among the heritabilities of different growth traits by different halfsib progenies.Average heritability values of height,DBH and volume were 0.33,0.34 and 0.36,respectively.Fortyfive superior families were selected in every progeny test,12 were selected in progeny trials by different years and five in different habitat progeny trials.Three superior families(Gui GC553A,Gui GC414A and Gui GC431A)were selected,although in different years and production regions.The genetic gains of timber volume of these selected r families ranged from 1.20 to 47.00%,which could provide a foundation for superior wood property selection and serve as material for seed improvement and extension in surrounding areas.
基金supported by the Special Fund of National Forestry Public Welfare of the State Forestry Administration (No.201104008)a Special Fund of the Research Institute of Forest Ecology, Environment and Protection of the Chinese Academy of Forestry, China (No. CAFRIFEEP201006)
文摘Environmental heterogeneity is a constant presence in the natural world that significantly affects plant behavior at a variety of levels of complexity. In order to estimate the spatial pattern of fine root biomass in the Three Gorges Reservoir Area, the spatial heterogeneity of fine root biomass in the upper layer of soils (0-10 cm) in three Mas- son pine (Pinus massoniana) stands in the Three Gorges Reservoir Area, China, was studied in 30 m x 30 m plots with geostatistical analysis. The results indicate that 1) both the live and dead fine root biomass of stand 2 were less than those of other stands, 2) the spatial variation of fine roots in the three stands was caused together by structural and ran- dom factors with moderate spatial dependence and 3) the magnitude of spatial heterogeneity of live fine roots ranked as: stand 3 〉 stand 1 〉 stand 2, while that of dead fine roots was similar in the three stands. These findings suggested that the range of spatial autocorrelation for fine root biomass varied considerably in the Three Gorges Reservoir Area, while soil properties, such as soil bulk density, organic matter and total nitrogen, may exhibit great effect on the spatial distribution of fine roots. Finally, we express our hope to be able to carry out further research on the quantitative relation- ship between the spatial heterogeneous patterns of plant and soil properties.
基金The National Natural Science Foundation of China (No. 30370283), the CAS Orientation Project (No. KSCX2-SW-120KSCX2-SW-133) and the Natural Science Foundation of Guangdong Province (No. 04002306)
文摘Barks of Pinus massoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity and conductivity. The acidity of the inner and outer barks from the polluted sites was significantly higher than those from the clean site, suggesting that the acidity of the bark occurred in concurrent with the air pollution. The significant lower pH values of the outer bark than the inner bark collected from all sites indicated that the outer bark was more sensitive than the inner bark in response to acid pollution, implying that the outer bark is more preferable when used as indication of atmospheric acid pollution. The conductivities of the inner barks differed significantly among the three sites, with higher values at the clean site. However, the significant differences were not observed among these sites. Furthermore, the pH values for the inner and outer barks were not correlated with the conductivity, which did not coincide with some other studies.
基金supported by the State Key Development Program for Basic Research of China ("973" Project) (2009CB119200)the National Project of Science+1 种基金Technology for the 11th Five-Year Plan in China (Grant No. 2006BAD08A15)the "948" Project of State Forestry Administration,P. R. China (2006-4-37)
文摘When pine trees are invaded by pine wilt diseases, the severely infected pine trees will die and fall down, or they will be removed when found to be damaged by the disease. It gives rise to the invasion of other species in these empty niches originally oc- cupied by pine trees, i.e., competing surrounding trees or understory shrubs will invade the empty niches during the following years. As a result, the spatial distribution and pattern of the main tree species in a pine forest will change, and a niche variety in the main population will occur. In the end, the direction of the succession and restoration of the pine forest ecosystem will be affected. In our study, a Pinus massoniana forest with the dominant shrub, Pleioblastus amarus, was invaded by pine wood nematode and was clear cut. Selecting this community as our research object, we studied the effect of the invasion of the pine wood nematode on the growth of the dominant shrub, P. amarus, in this Pinus massoniana forest. Our results show that, after the attacked pine trees were removed, the niche was occupied by Pleioblastus amarus and other shrubs, which benefited the growth ofP. amarus to its climax. Growth of P. amarus at the climax stage was greater compared with the unhealthy pine forest and the control group.
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2308,NY[2015]3027,[2020]1Y125 and[2019]2325)National Natural Science Foundation of China(No.31800481)Forestry Department Foundation of Guizhou Province of China(Nos.[2017]14,[2018]13).
文摘Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.
基金supported by the Guangxi Natural Science Foundation(2014GXNSFBA118106)
文摘Geranylgeranyl pyrophosphate synthetase(GGPPS) has gained increasing attention as a key enzyme in terpene analysis.We designed specific primers based on plant GGPPS homologs and used reverse transcription polymerase chain reaction(RT-PCR) to obtain and identify Pin GGPPS,a GGPPS gene sequence from Pinus massoniana,using bioinformatics tools.Quantitative PCR analysis of Pin GGPPS expression levels in roots,pine needles,immature stems,and semilignified stems from 6-month-old P.massoniana showed that expression levels of Pin GGPPS were highest in pine needles,followed by immature stems and semilignified stems,and lowest in roots.When we examined the correlation between Pin GGPPS gene expression levels and resin productivity in 20 adult plants for 28 successive days,Pin GGPPS expression levels presented a substantially linear distribution when plotted against their corresponding resin yields.In summary,we characterized the gene Pin GGPPS for the first time in P.massoniana,and established a correlation between Pin GGPPS gene expression levels and resin productivity,suggesting the importance of theory and production practice for P.massoniana.
基金financially supported by the National Key Research and Development Program(2017YFD0600105)the National Natural Science Foundation of China(Grant No.31870641)+2 种基金the Research Foundation of Education Department of Fujian Province(No.JAT170882)Project of Financial Department of Fujian Province(Nos.K81139238 and K8911010)the Special Fund for Forestry Research in the Public Interest of China(No.201304401)
文摘Pine wilt disease(PWD)is a devastating disease affecting the growth of Pinus massoniana,often leading to withering and death.To reveal the changes involved during disease progression,we investigated the mRNA expression profile of P.massoniana infested by Bursaphelenchus xylophilus.The infestation resulted in the downregulation of genes involved in interactions with pathogenic pathways such as disease resistance gene,CC-NBS-LRR resistancelike protein,and the gene encoding a putative nematode resistance protein.Increased infestation pressure(number of nematodes inoculated)caused a continuous decline in the gene expression of stem samples.An infestation of P.massoniana also resulted in a pathway enrichment of genes involved in phenylpropanoid metabolism and flavonoid biosynthesis,which in turn reduced the levels of total phenols and total flavonoids.A downregulation of auxin responsive family protein was observed in infested samples,which resulted in a suppression of plant growth.Thus,upon B.xylophilus infestation,a downregulation of genes associated with the recognition of pathogens,PWD resistance,and growth regulation was observed in P.massoniana,together with a decrease in the levels of phytoalexinlike secondary substances,all of which resulted in withering and ultimately death of P.massoniana.
基金supported by the Science and Technology Department of Guangdong Province,China(Nos.2015B020207002 and 2014A020216032)the National Natural Science Foundation of China(No.31270675)
文摘The ecological effects of eucalypt plantations(EPs) have garnered increasing attention.To understand their effect on soil quality at a landscape scale,and to determine whether soil quality parameters differ due to different stand types,we evaluated soil characteristics in twenty-one groups of EPs,Pinus massoniana Lamb.plantations(PMPs) and natural broadleaved forests(NBFs)across Guangdong Province,China.Both the physical characteristics of soil hydrology and the properties of soil nutrients in A and B horizons were determined.Results showed that,compared to NBFs,EPs and PMPs produced a shallower litter layer,reduced canopy density,higher soil bulk density,significantly lower total porosity,non-capillary porosity,total water volume,and hygroscopic water in the A horizon(P〈0.05).Moreover,total N,available K,and soil organic carbon(SOC) in EPs and PMPs were significantly lower than in NBFs.EPs and PMPs did not differ significantly in N,P or K content,but PMPs had significantly lower SOC and boron in the A horizon than EPs.Low p H and poor capacity to buffer acidification generally occurred in all cover types.Both EPs and PMPs showed a decline in soil properties relative to NBFs,but EPs and PMPs exhibited no significant difference.These results indicate that actions are needed to ameliorate the potential negative effects on soil quality in forestry plantations.
文摘Characterizing the mechanical properties of wood cell walls will lead to better understanding and optimization of modifications made to wood infected by the blue-stain fungi.In this study,in situ nanoindentation was used to characterize the mechanical properties of the cell walls of Pinus massoniana infected by blue-stain fungi at the cellular level.The results show that in situ nanoindentation is an effective method for this purpose and that blue-stain fungi penetrate wood structures and degrade wood cell walls,significantly reducing the mechanical properties of the cell walls.The method can also be used to evaluate and improve the properties of other wood species infected by blue-stain fungi.
基金financially supported by the Special Scientific Research Fund for Public Service Sectors of Forestry(Grant No.201504603)Science and Technology Projects of Fujian Province(2014NZ003)the National Natural Science Foundation of China(Grant Nos.31370560,31170520)
文摘Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.
基金supported by the National Natural Science Foundation of China(No.31870620)the National Technology Extension Fund of Forestry([2019]06)the Fundamental Research Funds for the Central Universities(No.PTYX202107)。
文摘The physiological characteristics of trees change with age,suggesting that growth-related climate signals vary over time.This study aimed to clarify the impacts of different diameter classes on the chronological characteristics of Pinus massoniana Lamb.and its response to climatic factors.Chronologies of P inus massoniana were established in small diameter(14.1 cm),middle diameter(27.3 cm),and large diameter(34.6 cm)trees according to dendrochronology.The results show that:(1)radial growth of different diameter classes had varied characteristics and climate sensitivities;(2)radial growth of small diameter trees was affected by climatic factors of the previous and the current year,while large diameter trees were mainly affected by climatic factors of the current year;and(3)precipitation and temperature were key factors that restricted the radial growth of small and large diameter trees,respectively.