With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The...With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.展开更多
A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functio...A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functions are presented.Last,several efficient methods for speeding up display of graphics are introduced.The new geometric modeling approach offers to people a new way to solve 3D visualization of complex urban pipe network.展开更多
In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe ...In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of sea...This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of seabed pipe network. The mathematical model is solved by the spanning tree method of graph theory and network analysis. All spanning trees of a network graph compose all the feasible solutions of the mathematical model. The optimal solution of the model is the spanning tree with the minimum cost among all spanning trees. This method can be used to optimize the seabed pipe network system and give a minimum cost plan for the development of offshore marginal oilfield groups.展开更多
A variable chlorine decay rate modeling of the Matsapha town water network was developed based on initial chlorine dosages. The model was adequately described by a second order rate function of the chlorine decay rate...A variable chlorine decay rate modeling of the Matsapha town water network was developed based on initial chlorine dosages. The model was adequately described by a second order rate function of the chlorine decay rate with respect to the initial chlorine dose applied. Simulations of chlorine residuals within the Matsapha water distribution network were run using the EPANET 2.0 program at different initial chlorine dosages and using the variable decay rate as described by the second order model. The measurement results indicated that the use of constant decay rate tended to underestimate chlorine residuals leading to potentially excess dosages with the associated chemical cost and side effects. The error between the two rate models varied between 0% and 15%. It is suggested that the use of water quality simulation programs such as EPANET be enhanced through the extension programs that accommodate variable rate modeling of chlorine residuals within distribution systems.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">The reliability and ease of applying metaheuristic methods in solving large and complex equation systems make it int...<div style="text-align:justify;"> <span style="font-family:Verdana;">The reliability and ease of applying metaheuristic methods in solving large and complex equation systems make it interesting to be applied as an alternative solution to solving problems in various fields. This article proves the effectiveness of an optimization model based on the <span style="font-family:Verdana;">m<span style="font-family:Verdana;">etaheuristic method for the analysis of hydraulic parameters of drinking water distribution pipes. The metaheuristic methods explored are Differential Evolution (DE) algorithm, Particle Swam Optimization (PSO) algorithm and CODEQ algorithm. The effectiveness of the three methods is measured relative by comparing the results of the analysis of the three models with the results from Newton Raphson method and Monte Carlo simulation method. The analysis shows that the optimization model based on the DE, PSO and CODEQ algorithms is very effective for solving problems on a simple network that has 6 pipe elements and 5 service nodes. The results obtained have a level of accuracy as good as Newton Raphson method. In the case of complex networks that have 32 pipe elements and 21 service nodes, there is an indication of performance degradation which is indicated by a decrease in fitness value. In this case, Newton Raphson method still shows its consistency. The optimization model based on the metaheuristic method is still far more effective than the Monte Carlo simulation method, although it is not as effective as Newton Raphson method. The Monte Carlo simulation method is not recommended for hydraulic pipe network analysis, even for simple networks.展开更多
Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick,...Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.展开更多
The potability of drinking water depends not only on the source and the treatment system, but also on the quality of the waterworks. In fact, the quality of drinking water is considerably degraded by the dilapidated s...The potability of drinking water depends not only on the source and the treatment system, but also on the quality of the waterworks. In fact, the quality of drinking water is considerably degraded by the dilapidated state and lack of maintenance of drinking water networks. In Côte d’Ivoire, the majority of drinking water networks in the various towns are ageing. In Daloa, despite the efforts made by the company in charge of water treatment and distribution to make the water drinkable, the water at consumers’ taps is often colored, has an unpleasant aftertaste and settles after collection. As a result, people are concerned about the potability of tap water, and some are turning to alternative sources of drinking water of unknown quality. In order to determine the factors responsible for the deterioration in water color and taste, as well as the sectors of the network most affected, a diagnosis of the network’s equipment was carried out. Water samples taken from the network were analyzed for color and turbidity. The diagnosis revealed that most of the equipment (suction pads, valves, drains and fire hydrants) is outdated and irregularly maintained. Analyses show that the water is more colored in cast-iron and PVC pipes than in asbestos cement pipes. Coloration values in the network range from 0 to 27 UVC for asbestos cement pipes, from 15 to 56 UCV for ductile iron pipes, and from 11 to 102 UCV for PVC pipes. On the over hand, turbidity values vary from 8.02 to 3.32 NTU for ductile cast iron pipes, 8.51 to 16.98 NTU for asbestos cement pipes and 0.9 to 6.98 NTU for PVC pipes. Old cast-iron pipes release ferric ions on contact with water, degrading their color. Old cast-iron pipes release ferric ions into the water, degrading its color. The high color values observed in the vicinity of drains are thought to be due to irregular maintenance of the network. In fact, after network maintenance, a reduction rate ranging from 2% to 73% is observed for turbidity, while for color, the rate varies from 5% to 72%. In short, the network’s obsolescence and irregular maintenance contribute significantly to the deterioration of water quality.展开更多
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
文摘With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.
文摘A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functions are presented.Last,several efficient methods for speeding up display of graphics are introduced.The new geometric modeling approach offers to people a new way to solve 3D visualization of complex urban pipe network.
文摘In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of seabed pipe network. The mathematical model is solved by the spanning tree method of graph theory and network analysis. All spanning trees of a network graph compose all the feasible solutions of the mathematical model. The optimal solution of the model is the spanning tree with the minimum cost among all spanning trees. This method can be used to optimize the seabed pipe network system and give a minimum cost plan for the development of offshore marginal oilfield groups.
文摘A variable chlorine decay rate modeling of the Matsapha town water network was developed based on initial chlorine dosages. The model was adequately described by a second order rate function of the chlorine decay rate with respect to the initial chlorine dose applied. Simulations of chlorine residuals within the Matsapha water distribution network were run using the EPANET 2.0 program at different initial chlorine dosages and using the variable decay rate as described by the second order model. The measurement results indicated that the use of constant decay rate tended to underestimate chlorine residuals leading to potentially excess dosages with the associated chemical cost and side effects. The error between the two rate models varied between 0% and 15%. It is suggested that the use of water quality simulation programs such as EPANET be enhanced through the extension programs that accommodate variable rate modeling of chlorine residuals within distribution systems.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">The reliability and ease of applying metaheuristic methods in solving large and complex equation systems make it interesting to be applied as an alternative solution to solving problems in various fields. This article proves the effectiveness of an optimization model based on the <span style="font-family:Verdana;">m<span style="font-family:Verdana;">etaheuristic method for the analysis of hydraulic parameters of drinking water distribution pipes. The metaheuristic methods explored are Differential Evolution (DE) algorithm, Particle Swam Optimization (PSO) algorithm and CODEQ algorithm. The effectiveness of the three methods is measured relative by comparing the results of the analysis of the three models with the results from Newton Raphson method and Monte Carlo simulation method. The analysis shows that the optimization model based on the DE, PSO and CODEQ algorithms is very effective for solving problems on a simple network that has 6 pipe elements and 5 service nodes. The results obtained have a level of accuracy as good as Newton Raphson method. In the case of complex networks that have 32 pipe elements and 21 service nodes, there is an indication of performance degradation which is indicated by a decrease in fitness value. In this case, Newton Raphson method still shows its consistency. The optimization model based on the metaheuristic method is still far more effective than the Monte Carlo simulation method, although it is not as effective as Newton Raphson method. The Monte Carlo simulation method is not recommended for hydraulic pipe network analysis, even for simple networks.
文摘Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.
文摘The potability of drinking water depends not only on the source and the treatment system, but also on the quality of the waterworks. In fact, the quality of drinking water is considerably degraded by the dilapidated state and lack of maintenance of drinking water networks. In Côte d’Ivoire, the majority of drinking water networks in the various towns are ageing. In Daloa, despite the efforts made by the company in charge of water treatment and distribution to make the water drinkable, the water at consumers’ taps is often colored, has an unpleasant aftertaste and settles after collection. As a result, people are concerned about the potability of tap water, and some are turning to alternative sources of drinking water of unknown quality. In order to determine the factors responsible for the deterioration in water color and taste, as well as the sectors of the network most affected, a diagnosis of the network’s equipment was carried out. Water samples taken from the network were analyzed for color and turbidity. The diagnosis revealed that most of the equipment (suction pads, valves, drains and fire hydrants) is outdated and irregularly maintained. Analyses show that the water is more colored in cast-iron and PVC pipes than in asbestos cement pipes. Coloration values in the network range from 0 to 27 UVC for asbestos cement pipes, from 15 to 56 UCV for ductile iron pipes, and from 11 to 102 UCV for PVC pipes. On the over hand, turbidity values vary from 8.02 to 3.32 NTU for ductile cast iron pipes, 8.51 to 16.98 NTU for asbestos cement pipes and 0.9 to 6.98 NTU for PVC pipes. Old cast-iron pipes release ferric ions on contact with water, degrading their color. Old cast-iron pipes release ferric ions into the water, degrading its color. The high color values observed in the vicinity of drains are thought to be due to irregular maintenance of the network. In fact, after network maintenance, a reduction rate ranging from 2% to 73% is observed for turbidity, while for color, the rate varies from 5% to 72%. In short, the network’s obsolescence and irregular maintenance contribute significantly to the deterioration of water quality.