As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for...Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.展开更多
This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine ...This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine designs for possible implementation in water supply systems (WSSs) or in other pressurized water pipe infrastructures, such as irrigation, wastewater, or drainage systems. A new methodology is presented based on a theoretical, technical and economic analysis. Viability studies focused on small power values for different pipe systems were investigated. Detailed analyses of alternative typical volumetric energy converters were conducted on the basis of mathematical and physical fundamentals as well as computational fluid dynamics (CFD) associated with the interaction between the flow conditions and the system operation. Important constraints (e.g., size, stability, efficiency, and continuous steady flow conditions) can be identified and a search for alternative rotary yolumetric converters is being conducted. As promising cost-effective solutions for the coming years, adapted rotor-dynamic turbomachines and non-conventional axial propeller devices were analyzed based on the basic principles of pumps operating as turbines, as well as through an extensive comparison between simulations and experimental tests.展开更多
With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The...With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.展开更多
Objective To assess the health safety of copper, steel and plastic water pipes by field water quality investigations. Methods Four consumers were randomly selected for each type of water pipes. Two consumers of every ...Objective To assess the health safety of copper, steel and plastic water pipes by field water quality investigations. Methods Four consumers were randomly selected for each type of water pipes. Two consumers of every type of the water pipes had used the water pipes for more than 1 year and the other 2 consumers had used the water pipes for less than 3 months. The terminal volume of tap water in copper and steel water pipes should be not less than 0.1 liter, whereas that in plastic water pipes should be not less than 1 liter. Results The mean values of the experimental results in the second field water quality investigation of the copper and steel water pipes met the Sanitary Standards for Drinking Water Quality. The items of water sample of the plastic water pipes met the requirements of the Sanitary Standards for Drinking Water Quality. Conclusion Copper, steel, and plastic pipes can be used as drinking water pipes.展开更多
Minimizing water loss in water supply networks is one of the objectives for protecting water resources. Currently, the large amount of water loss is mainly due to leakage of the pipeline network. The leaking of pipe c...Minimizing water loss in water supply networks is one of the objectives for protecting water resources. Currently, the large amount of water loss is mainly due to leakage of the pipeline network. The leaking of pipe can be caused by incorrect construction, impacted by external forces, or corroded pipe material and aging. Therefore, to control and predict the cracking area on pipe, it is necessary to collect data about pipe conditions, approve the solution of technology improvement and define the ability of pipe capacity from setting up to the first preparing time. This paper will demonstrate how to evaluate corrosion pipe under the age of pipe and the impact level of internal pressure pipe at different times, and will put forward solution of effective leaking management on water supply network.展开更多
Geographic Information Systems(GIS) can be successfully introduced as a tool to manage water system infrastructures.This technology was taken into consideration after the local authorities’ estimation for almost 30%l...Geographic Information Systems(GIS) can be successfully introduced as a tool to manage water system infrastructures.This technology was taken into consideration after the local authorities’ estimation for almost 30%losses in the water distribution networks in cities.The major issue of water shortage in展开更多
The article addresses the results of effective water losses prevention in public water supply systems, focusing on procedures for monitoring hidden leaks as the main part of losses and as the first step to control and...The article addresses the results of effective water losses prevention in public water supply systems, focusing on procedures for monitoring hidden leaks as the main part of losses and as the first step to control and prevent them. The described methodology has been applied based on a cross-border cooperation between twin capital cities Vienna and Bratislava in the Central Europe Region within the project deWaloP (Developing Water Loss Prevention) and adopted in Bratislava Water Company (BVS) in the Slovak Republic. The paper provides a complex of simple and easily available practices for analyses of water distribution measurements bringing essential information as to the necessity to use advanced procedures to actively reduce leakage. These practices involve minimum night flows analyses, hydrodynamic pressures analyses, pinpointing of water leakages by working with valves in the water network, the methodology of setting alarm limits for measured data, as well as use of advanced practices to obtain missing topologic data. As the water infrastructure in former socialistic countries are in bad technical condition and the lack of pertinent operational data is a significant obstacle to the application of a more sophisticated methodology based on GIS and other information systems, the procedures focus on using the most simple way to evaluate and control water losses. Finally, the introduction of described methodology in Bratislava Water Company after many years of unsuccessful effort even with expensive sophisticated leakage equipment brought positive outputs and the graph line of water losses level is finally going down. The use of expensive multi-correlating equipment together with human resources on the basis of implementing the above described leakage monitoring will subsequently become more effective, as it shall pinpoint major leakages, disclosure and removal of that shall significantly contribute to the effective reduction of water losses.展开更多
Water scarcity is the major problem confronting both urban and rural dwellers in Enugu State. This scarcity emanated from indiscriminate pipe failure, lack of adequate maintenance, uncertainty on the time of repair or...Water scarcity is the major problem confronting both urban and rural dwellers in Enugu State. This scarcity emanated from indiscriminate pipe failure, lack of adequate maintenance, uncertainty on the time of repair or replacement of pipes etc. There is no systematic approach to determining replacement or repair time of the pipes. Hence, the rule of thumb is used in making such a vital decision. The population is increasing, houses are built but the network is not expanded and the existing ones that were installed for no less than two to three decades ago are not maintained. These compounded the problem of scarcity of water in the state. Replacement or repair of water pipes when they are seen spilling water cannot solve this lingering problem. The solution can be achieved by developing an adequate predictive model for water pipe replacement. Hence, this research is aimed at providing a solution to this problem of water scarcity by suggesting a policy that will be used for better planning. The interests in this paper were to obtain a water pipe failure model, the intensity function λ(t) [failure rate], the reliability R(t) and the optimal time of replacement and they were achieved. It was observed that the failure rate of the pipes increases with time while their reliability deteriorates with time. Hence, the Optimal replacement policy is that each pipe should be replaced after 4th break when the reliability = 0.0011.展开更多
借助船级社规范与MATLAB软件,开发可提取浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)管道任意位置处加速度的程序,以便更好地对FPSO主甲板冷却水管路系统进行应力分析。将该系统任意位置处实际加速度值和FPS...借助船级社规范与MATLAB软件,开发可提取浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)管道任意位置处加速度的程序,以便更好地对FPSO主甲板冷却水管路系统进行应力分析。将该系统任意位置处实际加速度值和FPSO船体重心处加速度值以均布载荷形式分别施加至管道上,利用CAESARⅡ软件分析在满载工况条件下该系统的应力变化。结果表明,在FPSO满载工况条件下,采用重心处加速度值得到的结果相较于其自身实际加速度值的作用结果会出现应力冗余和应力不足的情况,例如节点50应力增加1.01%,而节点2570应力减小0.19%。展开更多
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
文摘Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.
基金supported by the FCT (PTDC/ECM/65731/2006)the 7FP European HYLOW Project (Grant No. 212423)
文摘This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine designs for possible implementation in water supply systems (WSSs) or in other pressurized water pipe infrastructures, such as irrigation, wastewater, or drainage systems. A new methodology is presented based on a theoretical, technical and economic analysis. Viability studies focused on small power values for different pipe systems were investigated. Detailed analyses of alternative typical volumetric energy converters were conducted on the basis of mathematical and physical fundamentals as well as computational fluid dynamics (CFD) associated with the interaction between the flow conditions and the system operation. Important constraints (e.g., size, stability, efficiency, and continuous steady flow conditions) can be identified and a search for alternative rotary yolumetric converters is being conducted. As promising cost-effective solutions for the coming years, adapted rotor-dynamic turbomachines and non-conventional axial propeller devices were analyzed based on the basic principles of pumps operating as turbines, as well as through an extensive comparison between simulations and experimental tests.
文摘With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.
基金This work was sponsored by the International Copper Association.
文摘Objective To assess the health safety of copper, steel and plastic water pipes by field water quality investigations. Methods Four consumers were randomly selected for each type of water pipes. Two consumers of every type of the water pipes had used the water pipes for more than 1 year and the other 2 consumers had used the water pipes for less than 3 months. The terminal volume of tap water in copper and steel water pipes should be not less than 0.1 liter, whereas that in plastic water pipes should be not less than 1 liter. Results The mean values of the experimental results in the second field water quality investigation of the copper and steel water pipes met the Sanitary Standards for Drinking Water Quality. The items of water sample of the plastic water pipes met the requirements of the Sanitary Standards for Drinking Water Quality. Conclusion Copper, steel, and plastic pipes can be used as drinking water pipes.
文摘Minimizing water loss in water supply networks is one of the objectives for protecting water resources. Currently, the large amount of water loss is mainly due to leakage of the pipeline network. The leaking of pipe can be caused by incorrect construction, impacted by external forces, or corroded pipe material and aging. Therefore, to control and predict the cracking area on pipe, it is necessary to collect data about pipe conditions, approve the solution of technology improvement and define the ability of pipe capacity from setting up to the first preparing time. This paper will demonstrate how to evaluate corrosion pipe under the age of pipe and the impact level of internal pressure pipe at different times, and will put forward solution of effective leaking management on water supply network.
文摘Geographic Information Systems(GIS) can be successfully introduced as a tool to manage water system infrastructures.This technology was taken into consideration after the local authorities’ estimation for almost 30%losses in the water distribution networks in cities.The major issue of water shortage in
文摘The article addresses the results of effective water losses prevention in public water supply systems, focusing on procedures for monitoring hidden leaks as the main part of losses and as the first step to control and prevent them. The described methodology has been applied based on a cross-border cooperation between twin capital cities Vienna and Bratislava in the Central Europe Region within the project deWaloP (Developing Water Loss Prevention) and adopted in Bratislava Water Company (BVS) in the Slovak Republic. The paper provides a complex of simple and easily available practices for analyses of water distribution measurements bringing essential information as to the necessity to use advanced procedures to actively reduce leakage. These practices involve minimum night flows analyses, hydrodynamic pressures analyses, pinpointing of water leakages by working with valves in the water network, the methodology of setting alarm limits for measured data, as well as use of advanced practices to obtain missing topologic data. As the water infrastructure in former socialistic countries are in bad technical condition and the lack of pertinent operational data is a significant obstacle to the application of a more sophisticated methodology based on GIS and other information systems, the procedures focus on using the most simple way to evaluate and control water losses. Finally, the introduction of described methodology in Bratislava Water Company after many years of unsuccessful effort even with expensive sophisticated leakage equipment brought positive outputs and the graph line of water losses level is finally going down. The use of expensive multi-correlating equipment together with human resources on the basis of implementing the above described leakage monitoring will subsequently become more effective, as it shall pinpoint major leakages, disclosure and removal of that shall significantly contribute to the effective reduction of water losses.
文摘Water scarcity is the major problem confronting both urban and rural dwellers in Enugu State. This scarcity emanated from indiscriminate pipe failure, lack of adequate maintenance, uncertainty on the time of repair or replacement of pipes etc. There is no systematic approach to determining replacement or repair time of the pipes. Hence, the rule of thumb is used in making such a vital decision. The population is increasing, houses are built but the network is not expanded and the existing ones that were installed for no less than two to three decades ago are not maintained. These compounded the problem of scarcity of water in the state. Replacement or repair of water pipes when they are seen spilling water cannot solve this lingering problem. The solution can be achieved by developing an adequate predictive model for water pipe replacement. Hence, this research is aimed at providing a solution to this problem of water scarcity by suggesting a policy that will be used for better planning. The interests in this paper were to obtain a water pipe failure model, the intensity function λ(t) [failure rate], the reliability R(t) and the optimal time of replacement and they were achieved. It was observed that the failure rate of the pipes increases with time while their reliability deteriorates with time. Hence, the Optimal replacement policy is that each pipe should be replaced after 4th break when the reliability = 0.0011.
文摘借助船级社规范与MATLAB软件,开发可提取浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)管道任意位置处加速度的程序,以便更好地对FPSO主甲板冷却水管路系统进行应力分析。将该系统任意位置处实际加速度值和FPSO船体重心处加速度值以均布载荷形式分别施加至管道上,利用CAESARⅡ软件分析在满载工况条件下该系统的应力变化。结果表明,在FPSO满载工况条件下,采用重心处加速度值得到的结果相较于其自身实际加速度值的作用结果会出现应力冗余和应力不足的情况,例如节点50应力增加1.01%,而节点2570应力减小0.19%。