In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modif...In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h.展开更多
基金financial support by the National Key Technologies R&D Program of China (No. 2011BAE25B03)
文摘In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h.