Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to...Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.展开更多
An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied t...An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.展开更多
Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while ...Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness.展开更多
With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the erod...With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the eroded pipe and its spatial evolution with time during the piping process was still not clear.In this study,we developed a Hele-Shaw cell to visualize the dynamic progression of BEP.With imaging process technology,we obtained a typical process of BEP(the erosion process can be divided into a piping progression phase and a piping stabilization phase),quantitatively characterized the formation of erosion pipes,and compared the patterns of erosion(e.g.,the erosion area A and the maximum erosion radius R)that spontaneously develop under different fluxes of water.The most interesting finding is that the sand grains in a thicker Hele-Shaw model are easier to dislodge,which is possibly due to the granular system in a thicker model having more degrees of freedom,reducing the stability of the sand grains.展开更多
Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D ass...Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.展开更多
基金Foundation item: Project(2011BAB09B01) supported by the National Science and Technology Support Program of China Project(cstc2013jcyjA30006) supported by Chongqing Science & Technology Commission, China Project(K J130412) supported by Chongqing Education Commission, China
文摘Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.
基金support from the South China University of Technology for the PhD short-term visiting project。
文摘An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.
基金National Science and Technology Major Special Project,2016ZX05044CBM Development Technology and Pilot Test in East Yunnan and Western Guizhou.
文摘Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness.
基金the National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit(No.2021GY01)the National Natural Science Foundation of China(No.41630641)。
文摘With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the eroded pipe and its spatial evolution with time during the piping process was still not clear.In this study,we developed a Hele-Shaw cell to visualize the dynamic progression of BEP.With imaging process technology,we obtained a typical process of BEP(the erosion process can be divided into a piping progression phase and a piping stabilization phase),quantitatively characterized the formation of erosion pipes,and compared the patterns of erosion(e.g.,the erosion area A and the maximum erosion radius R)that spontaneously develop under different fluxes of water.The most interesting finding is that the sand grains in a thicker Hele-Shaw model are easier to dislodge,which is possibly due to the granular system in a thicker model having more degrees of freedom,reducing the stability of the sand grains.
文摘Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.