Apples often exhibit bitter pits in response to metabolic disorders during ripening and storage;however, the mechanisms underlying the bitter pit(BP) development remain unclear. Here, metabolome and transcriptome anal...Apples often exhibit bitter pits in response to metabolic disorders during ripening and storage;however, the mechanisms underlying the bitter pit(BP) development remain unclear. Here, metabolome and transcriptome analyses were performed to investigate BP pulp of 'Fuji'. Two auxin-response genes, MdGH3.1 and MdSAUR36, were screened. Their expression as well as the auxin content in BP pulp were found to be higher than those in healthy pulp(P < 0.01). In the field, excess CO(NH2)2increased the incidence of BP. Moreover, the auxin content and MdGH3.1 expression increased in apples after nitrogen fertilization. On Day 30 before harvest, the two genes were transiently transferred to the fruit, and 20.69% and 23.21% of BP fruits were harvested. After 10 μmol·L-1auxin was infiltrated at low pressure into postharvest fruit, the increase in MdGH3.1 expression occurred earlier than that in MdSAUR36. MdGH3.1 increased the expression of MdSAUR36, but MdSAUR36 did not increase expression of MdGH3.1. Therefore, we suggest that MdGH3.1 acts upstream of MdSAUR36 during BP formation and that these genes induce BP formation by regulating auxin and phenylpropanoid biosynthesis.展开更多
We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growt...We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.展开更多
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta...Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.展开更多
In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Z...The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.展开更多
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col...Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.展开更多
This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify...This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.展开更多
Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology...Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology and knowledge have contributed to the scale at which mining is being done. Challenges in such a setting arise due to the socio-economic and environmental impacts of mining, which create multidimensional problems. The study investigated the importance of engaging stakeholders in progressive rehabilitation programs for large-scale open pit mines, using a case study of the Lumwana Mine and its host community, Manyama. A qualitative approach was used, and data was collected through one-on-one interviews. A combination of convenient and quota sampling was used to engage with host community leaders, professionals and academicians from various fields and institutions. Results showed that most participants had agreed that stakeholder engagement is important for progressive rehabilitation, but the challenge was that the host community and municipal council representatives were not aware of any progressive rehabilitation efforts at Lumwana Mine. This was attributed to a lack of stakeholder engagement and communication of mitigation progress activities by the Lumwana Mine. Results also revealed that the lack of environmental impact assessment regulations to compel companies to involve stakeholders throughout the entire life of the mine other than just at the pre-mining stage led to a lack of compliance and accountability in rehabilitation.展开更多
The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was f...The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods.The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS.Over the rising period of CE,the 304L SS experienced a transition from passivation to depassivation,leading to the massive growth of metastable pitting and stable pitting.The depassivation of304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred.展开更多
The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is great...The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting.展开更多
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
Tubular members subject to combined pitting corrosion and crack damage were numerically studied to clarify the reduction of ultimate strength and failure behavior,based on numerical models validated against available ...Tubular members subject to combined pitting corrosion and crack damage were numerically studied to clarify the reduction of ultimate strength and failure behavior,based on numerical models validated against available experi-ments.The effects of length,location and inclined angle of a crack under combined damage were studied to disclose the mechanism of interaction between the crack and corrosion pits.The methods,named as linear superposition directly accumulating the effects of solo crack and solo pitting damage,as well as crack projection transferring an inclined crack to a transverse one,were discussed and verified in the view of assessing ultimate strength of tubular members with combined damage.It was shown that the former is practical but complex while the next always over-estimates the residual strength.Besides,the location and inclined angle of a crack have a subtle effect on the reduction of ultimate strength under combined damage,especially at higher level of pitting damage,due to the synergistic effect between corrosion pits and cracks.Such effect can lead to early occurrence of plasticity and local buckling by inducing stress interaction between crack tips and pits,and causing more significant strength reduction compared with a solo type of damage.A practical method was proposed to determine the loss ratio of cross-sectional area on the equivalent weakest section of a damaged member.Based on the loss ratio,a formula was presented to predict the ultimate strength of damaged members with combined damage,showing good applicability.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
In order to study the impact of pit excavation on the adjacent existing subway structure,the safety impact assessment of a project was carried out using project under construction near the subway as the engineering ba...In order to study the impact of pit excavation on the adjacent existing subway structure,the safety impact assessment of a project was carried out using project under construction near the subway as the engineering background.The results show that the new pit construction will produce some additional deformation on the existing subway interval structure,the deformation values are within the permissible range for safe operation.Through analysis of the results,the risk point rating of the pit adjacent to the interval is level 2.In general,the impacts of the pit construction on the neighboring subway structure are less than the specification limits.展开更多
基金the Agricultural Variety Improvement Project of Shandong Province(Grant No.2019LZGC007)Taishan Scholar Foundation of Shandong Province(Grant No.tstp20221134)China Agriculture Research System Foundation(Grant No.CARS-27).
文摘Apples often exhibit bitter pits in response to metabolic disorders during ripening and storage;however, the mechanisms underlying the bitter pit(BP) development remain unclear. Here, metabolome and transcriptome analyses were performed to investigate BP pulp of 'Fuji'. Two auxin-response genes, MdGH3.1 and MdSAUR36, were screened. Their expression as well as the auxin content in BP pulp were found to be higher than those in healthy pulp(P < 0.01). In the field, excess CO(NH2)2increased the incidence of BP. Moreover, the auxin content and MdGH3.1 expression increased in apples after nitrogen fertilization. On Day 30 before harvest, the two genes were transiently transferred to the fruit, and 20.69% and 23.21% of BP fruits were harvested. After 10 μmol·L-1auxin was infiltrated at low pressure into postharvest fruit, the increase in MdGH3.1 expression occurred earlier than that in MdSAUR36. MdGH3.1 increased the expression of MdSAUR36, but MdSAUR36 did not increase expression of MdGH3.1. Therefore, we suggest that MdGH3.1 acts upstream of MdSAUR36 during BP formation and that these genes induce BP formation by regulating auxin and phenylpropanoid biosynthesis.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303400)the National Key R&D Program of China(Grant No.2022YFB3605602)+2 种基金the Key R&D Program of Jiangsu Province(Grant Nos.BE2020004-3 and BE2021026)the National Naturaal Science Foundation of China(Grant No.61974065)Jiangsu Special Professorship,Collaborative Innovation Center of Solid-State Lighting and Energysaving Electronics.
文摘We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates byadopting both the continuous growth method and the Al modulation epitaxy(AME)growth method.The continuous growthmethod encounters significant challenges in controlling the growth mode.As the precise Al/N=1.0 ratio is difficult toachieve,either the excessive Al-rich or N-rich growth mode occurs.In contrast,by adopting the AME growth method,sucha difficulty has been effectively overcome.By manipulating the supply time of the Al and nitrogen sources,we were able toproduce AlN films with much improved surface morphology.The first step of the AME method,only supplying Al atoms,is important to wet the surface and the Al adatoms can act as a surfactant.Optimization of the initial Al supply time caneffectively reduce the pit density on the grown AlN surface.The pits density dropped from 12 pits/μm^(2)to 1 pit/μm^(2)andthe surface roughness reduced from 0.72 nm to 0.3 nm in a 2×2μm^(2)area for the AME AlN film homoepitaxially grownon an AlN template.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
基金supported by the Cooperation Project of Luzhou Laojiao Co.,Ltd.Sichuan University (21H0997)。
文摘The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.
基金funded by the‘Research Project of the Sucheng to Sihong Section of the Yanluo Expressway-Measurement Technology and Application of Bridge Quality Project Based on UAV Binocular Imaging(No.00-00-JSFW-20230203-029)’,received by H.Z.Wang.
文摘Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.
文摘This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.
文摘Mining globally contributes to the growth of many economies of the world. Since its inception, the Zambian mining industry has contributed largely to the country’s economy. The various developments both in technology and knowledge have contributed to the scale at which mining is being done. Challenges in such a setting arise due to the socio-economic and environmental impacts of mining, which create multidimensional problems. The study investigated the importance of engaging stakeholders in progressive rehabilitation programs for large-scale open pit mines, using a case study of the Lumwana Mine and its host community, Manyama. A qualitative approach was used, and data was collected through one-on-one interviews. A combination of convenient and quota sampling was used to engage with host community leaders, professionals and academicians from various fields and institutions. Results showed that most participants had agreed that stakeholder engagement is important for progressive rehabilitation, but the challenge was that the host community and municipal council representatives were not aware of any progressive rehabilitation efforts at Lumwana Mine. This was attributed to a lack of stakeholder engagement and communication of mitigation progress activities by the Lumwana Mine. Results also revealed that the lack of environmental impact assessment regulations to compel companies to involve stakeholders throughout the entire life of the mine other than just at the pre-mining stage led to a lack of compliance and accountability in rehabilitation.
基金financially supported of the National Natural Science Foundation of China (Nos.52101105 and 51975263)。
文摘The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods.The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS.Over the rising period of CE,the 304L SS experienced a transition from passivation to depassivation,leading to the massive growth of metastable pitting and stable pitting.The depassivation of304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred.
基金Supported by National Natural Science Foundation of China (Grant Nos.62033001 and 52175075)Chongqing Municipal Graduate Scientific Research and Innovation Foundation of China (Grant No.CYB21010)。
文摘The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting.
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
基金supported by the National Natural Science Foundation of China(Grant No.51879124)。
文摘Tubular members subject to combined pitting corrosion and crack damage were numerically studied to clarify the reduction of ultimate strength and failure behavior,based on numerical models validated against available experi-ments.The effects of length,location and inclined angle of a crack under combined damage were studied to disclose the mechanism of interaction between the crack and corrosion pits.The methods,named as linear superposition directly accumulating the effects of solo crack and solo pitting damage,as well as crack projection transferring an inclined crack to a transverse one,were discussed and verified in the view of assessing ultimate strength of tubular members with combined damage.It was shown that the former is practical but complex while the next always over-estimates the residual strength.Besides,the location and inclined angle of a crack have a subtle effect on the reduction of ultimate strength under combined damage,especially at higher level of pitting damage,due to the synergistic effect between corrosion pits and cracks.Such effect can lead to early occurrence of plasticity and local buckling by inducing stress interaction between crack tips and pits,and causing more significant strength reduction compared with a solo type of damage.A practical method was proposed to determine the loss ratio of cross-sectional area on the equivalent weakest section of a damaged member.Based on the loss ratio,a formula was presented to predict the ultimate strength of damaged members with combined damage,showing good applicability.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
文摘In order to study the impact of pit excavation on the adjacent existing subway structure,the safety impact assessment of a project was carried out using project under construction near the subway as the engineering background.The results show that the new pit construction will produce some additional deformation on the existing subway interval structure,the deformation values are within the permissible range for safe operation.Through analysis of the results,the risk point rating of the pit adjacent to the interval is level 2.In general,the impacts of the pit construction on the neighboring subway structure are less than the specification limits.