Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties...Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.展开更多
The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlor...The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.展开更多
Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic p...Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.展开更多
Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has...Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insight...Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes.展开更多
Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribu...Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase.展开更多
Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume ...Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.展开更多
The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive per...The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive performance was examined using three deflexion modes which are respectively, modified Bose mode, cantilever beam with uniformly distributed load and cantilever beam with non-uniformly distributed load. The results show that maximum thrust can be achieved with the pitching axis at the trailing edge, but the highest propulsive efficiency can be achieved with the pitching axis either 1/3 of the chord length from the leading edge in modified Bose mode, or 2/3 of the chord length from the leading edge in cantilever beam mode. At the same time, the effects of the Strouhal number and maximal attack angle on the hydrodynamics performance of the flexible fin were analyzed. Parameter interval of the maximum thrust coefficient and the highest propulsive efficiency were gained. If the Strouhal number is low, high propulsive efficiency can be achieved at low αmax , and vice versa.展开更多
The underlying principle of pitch determination based on the mean shift algorithm is studied, and the cause of pitch error propagation in the original pseudo code is analyzed. The problem of error propagation is solve...The underlying principle of pitch determination based on the mean shift algorithm is studied, and the cause of pitch error propagation in the original pseudo code is analyzed. The problem of error propagation is solved by choosing an appropriate initial pitch candidate F00. The theoretical choice guideline in a pitch epoch is obtained as ensuring the true pitch F0 satisfying F00/2 〈 F0 〈 3F00/2. The validity of the choice guideline is verified by the F00 experiment. Meanwhile, the algorithm is extended to the pitch determination in the noisy case and compared with the method of subharmonic-to-harmonic ratio (SHR). The experimental results show that the improved algorithm bears comparison with SHR and it runs much faster than SHR.展开更多
The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1...The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast.展开更多
In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is sing...In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified.展开更多
The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile ...The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile is defined as the variation in localchordwise bending stiffness (EI) of a fin, from leading to trailing edge.In this study, flexible fins with a standard NACA0012shape were tested alongside fins with a stiffness profile mimicking that of a Pumpkinseed Sunfish (Lepomis gibbosus).The finswere oscillated with a pitching sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force andstatic thrust were measured.Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significantimprovement in static thrust, compared to a fin of similar dimensions with a standard NACA0012 aerofoil profile.Thebiomimetic fin also produced thrust more consistently over each oscillation cycle.A comparison of fin materials of different stiffness showed that the improvement was due to the stiffness profile itself, andwas not simply an effect of altering the overall stiffness of the fin.Fins of the same stiffness profile were observed to follow thesame thrust-power curve, independent of the stiffness of the moulding material.Biomimetic fins were shown to produce up to26% greater thrust per watt of input power, within the experimental range.展开更多
In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the ...In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.展开更多
Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turb...Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.展开更多
In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-be...In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-beam model were studied atdifferent speeds for different sets of body parameters respectively. Furthermore, different body inertias were used in bounding.We found that running speed exerts effect on leg performance by means of centrifugal force. The centrifugal force can be understoodas an enhancement to the natural frequency of the spring-mass system. The disadvantage of body pitching may beoffset by the great increase in centrifugal force at high speed. The results also reveal that body mass distribution might not be themain reason for the difference in maximal running speeds of different animals.展开更多
Objective To investigate the image quality, radiation dose and diagnostic value of the low-tube-voltage high-pitch dual-source computed tomography(DSCT) with sinogram affirmed iterative reconstruction(SAFIRE) for non-...Objective To investigate the image quality, radiation dose and diagnostic value of the low-tube-voltage high-pitch dual-source computed tomography(DSCT) with sinogram affirmed iterative reconstruction(SAFIRE) for non-enhanced abdominal and pelvic scans. Methods This institutional review board-approved prospective study included 64 patients who gave written informed consent for additional abdominal and pelvic scan with DSCT in the period from November to December 2012. The patients underwent standard non-enhanced CT scans(protocol 1) [tube voltage of 120 k Vp/pitch of 0.9/filtered back-projection(FBP) reconstruction] followed by high-pitch non-enhanced CT scans(protocol 2)(100 k Vp/3.0/SAFIRE). The total scan time, mean CT number, signal-to-noise ratio(SNR), image quality, lesion detectability and radiation dose were compared between the two protocols. Results The total scan time of protocol 2 was significantly shorter than that of protocol 1(1.4±0.1 seconds vs. 7.6±0.6 seconds, P<0.001). There was no significant difference between protocol 1 and protocol 2 in mean CT number of all organs(liver, 55.4±6.3 HU vs. 56.1±6.8 HU, P=0.214; pancreas, 43.6±5.9 HU vs. 43.7±5.8 HU, P=0.785; spleen, 47.9±3.9 HU vs. 49.4±4.3 HU, P=0.128; kidney, 32.2±2.3 HU vs. 33.1±2.3 HU, P=0.367; abdominal aorta, 44.8±5.6 HU vs. 45.0±5.5 HU, P=0.499; psoas muscle, 50.7±4.1 HU vs. 50.3±4.5 HU, P=0.279). SNR on images of protocol 2 was higher than that of protocol 1(liver, 5.0±1.2 vs. 4.5±1.1, P<0.001; pancreas, 4.0±1.0 vs. 3.6±0.8, P<0.001; spleen, 4.7±1.0 vs. 4.1±0.9, P<0.001; kidney, 3.1±0.6 vs. 2.8±0.6, P<0.001; abdominal aorta, 4.1±1.0 vs. 3.8±1.0, P<0.001; psoas muscle, 4.5±1.1 vs. 4.3±1.2, P=0.012). The overall image noise of protocol 2 was lower than that of protocol1(9.8±3.1 HU vs. 11.1±3.0 HU, P<0.001). Image quality of protocol 2 was good but lower than that of protocol 1(4.1±0.7 vs. 4.6±0.5, P<0.001). Protocol 2 perceived 229 of 234 lesions(97.9%) that were detected in protocol 1 in the abdomen and pelvis. Radiation dose of protocol 2 was lower than that of protocol 1(4.4±0.4 m Sv vs. 7.3±2.4 m Sv, P<0.001) and the mean dose reduction was 41.4%. Conclusion The high-pitch DSCT with SAFIRE can shorten scan time and reduce radiation dose while preserving image quality in non-enhanced abdominal and pelvic scans.展开更多
文摘Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.
文摘The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.
文摘Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.
文摘Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
文摘Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes.
文摘Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase.
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248,22208138)Natural Science Foundation of Liaoning Province(2020-MS-137,2023-MS-140)+7 种基金Doctoral Start-up Foundation of Liaoning Province,China(2020-BS-081)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training center(IC180100005)schemesCSIRO Energy center and Kick-Start Project,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)Young Scientific Project of the Department of Education of Liaoning Province(LJKQZ20222263,LQN202008)Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization,Anhui University of Technology(CHV22-05).
文摘Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.
基金Supported by the National Natural Science Foundation of China under Grant No.50879031
文摘The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive performance was examined using three deflexion modes which are respectively, modified Bose mode, cantilever beam with uniformly distributed load and cantilever beam with non-uniformly distributed load. The results show that maximum thrust can be achieved with the pitching axis at the trailing edge, but the highest propulsive efficiency can be achieved with the pitching axis either 1/3 of the chord length from the leading edge in modified Bose mode, or 2/3 of the chord length from the leading edge in cantilever beam mode. At the same time, the effects of the Strouhal number and maximal attack angle on the hydrodynamics performance of the flexible fin were analyzed. Parameter interval of the maximum thrust coefficient and the highest propulsive efficiency were gained. If the Strouhal number is low, high propulsive efficiency can be achieved at low αmax , and vice versa.
基金The National Basic Research Program of China (973Program) (No2002CB312102)
文摘The underlying principle of pitch determination based on the mean shift algorithm is studied, and the cause of pitch error propagation in the original pseudo code is analyzed. The problem of error propagation is solved by choosing an appropriate initial pitch candidate F00. The theoretical choice guideline in a pitch epoch is obtained as ensuring the true pitch F0 satisfying F00/2 〈 F0 〈 3F00/2. The validity of the choice guideline is verified by the F00 experiment. Meanwhile, the algorithm is extended to the pitch determination in the noisy case and compared with the method of subharmonic-to-harmonic ratio (SHR). The experimental results show that the improved algorithm bears comparison with SHR and it runs much faster than SHR.
文摘The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast.
基金Natural Science Foundation of Gansu Province(Joint)Project(No.213244)Natural Science Foundation of Gansu Province(No.145RJZA136)Youth Science Foundation of Lanzhou Jiaotong University(No.2013040)
文摘In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified.
基金a grant from the Engineering and Physical Sciences Research Council of the United Kingdom
文摘The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile is defined as the variation in localchordwise bending stiffness (EI) of a fin, from leading to trailing edge.In this study, flexible fins with a standard NACA0012shape were tested alongside fins with a stiffness profile mimicking that of a Pumpkinseed Sunfish (Lepomis gibbosus).The finswere oscillated with a pitching sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force andstatic thrust were measured.Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significantimprovement in static thrust, compared to a fin of similar dimensions with a standard NACA0012 aerofoil profile.Thebiomimetic fin also produced thrust more consistently over each oscillation cycle.A comparison of fin materials of different stiffness showed that the improvement was due to the stiffness profile itself, andwas not simply an effect of altering the overall stiffness of the fin.Fins of the same stiffness profile were observed to follow thesame thrust-power curve, independent of the stiffness of the moulding material.Biomimetic fins were shown to produce up to26% greater thrust per watt of input power, within the experimental range.
基金financially supported by the National Natural Science Foundation of China(Grant No.51639004)
文摘In order to analyze the ice-going ship’s performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.
文摘Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.
文摘In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-beam model were studied atdifferent speeds for different sets of body parameters respectively. Furthermore, different body inertias were used in bounding.We found that running speed exerts effect on leg performance by means of centrifugal force. The centrifugal force can be understoodas an enhancement to the natural frequency of the spring-mass system. The disadvantage of body pitching may beoffset by the great increase in centrifugal force at high speed. The results also reveal that body mass distribution might not be themain reason for the difference in maximal running speeds of different animals.
文摘Objective To investigate the image quality, radiation dose and diagnostic value of the low-tube-voltage high-pitch dual-source computed tomography(DSCT) with sinogram affirmed iterative reconstruction(SAFIRE) for non-enhanced abdominal and pelvic scans. Methods This institutional review board-approved prospective study included 64 patients who gave written informed consent for additional abdominal and pelvic scan with DSCT in the period from November to December 2012. The patients underwent standard non-enhanced CT scans(protocol 1) [tube voltage of 120 k Vp/pitch of 0.9/filtered back-projection(FBP) reconstruction] followed by high-pitch non-enhanced CT scans(protocol 2)(100 k Vp/3.0/SAFIRE). The total scan time, mean CT number, signal-to-noise ratio(SNR), image quality, lesion detectability and radiation dose were compared between the two protocols. Results The total scan time of protocol 2 was significantly shorter than that of protocol 1(1.4±0.1 seconds vs. 7.6±0.6 seconds, P<0.001). There was no significant difference between protocol 1 and protocol 2 in mean CT number of all organs(liver, 55.4±6.3 HU vs. 56.1±6.8 HU, P=0.214; pancreas, 43.6±5.9 HU vs. 43.7±5.8 HU, P=0.785; spleen, 47.9±3.9 HU vs. 49.4±4.3 HU, P=0.128; kidney, 32.2±2.3 HU vs. 33.1±2.3 HU, P=0.367; abdominal aorta, 44.8±5.6 HU vs. 45.0±5.5 HU, P=0.499; psoas muscle, 50.7±4.1 HU vs. 50.3±4.5 HU, P=0.279). SNR on images of protocol 2 was higher than that of protocol 1(liver, 5.0±1.2 vs. 4.5±1.1, P<0.001; pancreas, 4.0±1.0 vs. 3.6±0.8, P<0.001; spleen, 4.7±1.0 vs. 4.1±0.9, P<0.001; kidney, 3.1±0.6 vs. 2.8±0.6, P<0.001; abdominal aorta, 4.1±1.0 vs. 3.8±1.0, P<0.001; psoas muscle, 4.5±1.1 vs. 4.3±1.2, P=0.012). The overall image noise of protocol 2 was lower than that of protocol1(9.8±3.1 HU vs. 11.1±3.0 HU, P<0.001). Image quality of protocol 2 was good but lower than that of protocol 1(4.1±0.7 vs. 4.6±0.5, P<0.001). Protocol 2 perceived 229 of 234 lesions(97.9%) that were detected in protocol 1 in the abdomen and pelvis. Radiation dose of protocol 2 was lower than that of protocol 1(4.4±0.4 m Sv vs. 7.3±2.4 m Sv, P<0.001) and the mean dose reduction was 41.4%. Conclusion The high-pitch DSCT with SAFIRE can shorten scan time and reduce radiation dose while preserving image quality in non-enhanced abdominal and pelvic scans.