期刊文献+
共找到307篇文章
< 1 2 16 >
每页显示 20 50 100
Operation State of theWind Turbine Pitch System Based on Fuzzy Comprehensive Evaluation
1
作者 Anfeng Zhu Qiancheng Zhao +2 位作者 LinGui Tianlong Yang Xuebing Yang 《Energy Engineering》 EI 2023年第2期425-444,共20页
To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the... To ensure wind turbine(WT)safe operations and improve the utilization rate of wind energy,effective evaluation of the operation state of the pitch system is critical.Therefore,a new method was proposed to evaluate the operation state of the pitch system of WT based on fuzzy comprehensive evaluation.Firstly,based on SCADA data,the working state of the pitch system under rated power state and power state of WT were analyzed.Secondly,through the analysis of characteristic parameters and physical mechanism of the pitch system,the consistency principle of characteristic parameters,the stability principle of power under rated state,and the stability principle of blade angle underpowered state were obtained.Next,based on the aforementioned principles,the evaluation indexes were established,and the fuzzy comprehensive evaluation method was used to establish the operation state evaluation model of the pitch system under rated power state and under power state of the WT.Finally,an example was provided to verify the effectiveness of the method.The evaluation model established in this study can be used as a technical reference for the online monitoring of WT pitch systems to ensure the safe and stable operation of WTs. 展开更多
关键词 Wind turbine(WT) pitch system fuzzy comprehensive evaluation state evaluation
下载PDF
Propulsive performance and flow field characteristics of a 2-D flexible fin with variations in the location of its pitching axis 被引量:1
2
作者 王志东 丛文超 张晓庆 《Journal of Marine Science and Application》 2009年第4期298-304,共7页
The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive per... The thrust coefficients and propulsive efficiency of a two-dimensional flexible fin with heaving and pitching motion were computed using FLUENT. The effect of different locations of the pitching axis on propulsive performance was examined using three deflexion modes which are respectively, modified Bose mode, cantilever beam with uniformly distributed load and cantilever beam with non-uniformly distributed load. The results show that maximum thrust can be achieved with the pitching axis at the trailing edge, but the highest propulsive efficiency can be achieved with the pitching axis either 1/3 of the chord length from the leading edge in modified Bose mode, or 2/3 of the chord length from the leading edge in cantilever beam mode. At the same time, the effects of the Strouhal number and maximal attack angle on the hydrodynamics performance of the flexible fin were analyzed. Parameter interval of the maximum thrust coefficient and the highest propulsive efficiency were gained. If the Strouhal number is low, high propulsive efficiency can be achieved at low αmax , and vice versa. 展开更多
关键词 flexible fin pitching axis Strouhal number maximal attack angle propulsive performance
下载PDF
Semi-quantitative analysis of the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy
3
作者 LIU Yue CHANG Sheng-kai +3 位作者 SU Zhan-peng HUANG Zu-jian QIN Ji YANG Jian-xiao 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期668-680,共13页
Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties... Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms. 展开更多
关键词 Mesophase pitch Carbon foams RAMAN FTIR GRAPHITIZATION
下载PDF
Preparation of a high-performance synthetic pitch from aromatic hydrocarbons containing N/Cl
4
作者 ZHANG Yu-kun LIN Xiong-chao +3 位作者 GAO Hong-feng XI Wen-shuai WANG Cai-hong WANG Yong-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期655-667,共13页
The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlor... The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch. 展开更多
关键词 QUINOLINE 1-Chloromethyl-naphthalene Synthetic pitch SPINNABILITY Carbon fiber
下载PDF
A review of the catalytic preparation of mesophase pitch
5
作者 MA Zi-hui YANG Tao +7 位作者 SONG Yan CHEN Wen-sheng DUAN Chun-feng SONG Huai-he TIAN Xiao-dong GONG Xiang-jie LIU Zheng-yang LIU Zhan-jun 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期583-610,共28页
Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic p... Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules. 展开更多
关键词 Mesophase pitch Catalytic polycondensation LEWIS-ACID Brønsted acid Catalyst-promoter system
下载PDF
The anisotropy of suprathermal electrons in the Martian ionosphere
6
作者 YuTian Cao Jun Cui +3 位作者 XiaoShu Wu WenJun Liang RuiQi Fu HaoYu Lu 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期459-471,共13页
Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth inv... Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth investigation of the pitch angle distribution of suprathermal electrons at two representative energies, 19−55 eV and 124−356 eV, using the extensive measurements made by the Solar Wind Electron Analyzer on board the Mars Atmosphere and Volatile Evolution. Throughout the study, we focus on the overall degree of anisotropy, defined as the standard deviation of suprathermal electron intensity among different directions which is normalized by the mean omni-directional intensity. The available data reveal the following characteristics: (1) In general, low energy electrons are more isotropic than high energy electrons, and dayside electrons are more isotropic than nightside electrons;(2) On the dayside, the anisotropy increases with increasing altitude at low energies but remains roughly constant at high energies, whereas on the nightside, the anisotropy decreases with increasing altitude at all energies;(3) Electrons tend to be more isotropic in strongly magnetized regions than in weakly magnetized regions, especially on the nightside. These observations indicate that the anisotropy is a useful diagnostic of suprathermal electron transport, for which the conversion between the parallel and perpendicular momenta as required by the conservation of the first adiabatic invariant, along with the atmospheric absorption at low altitudes, are two crucial factors modulating the observed variation of the anisotropy. Our analysis also highlights the different roles on the observed anisotropy exerted by suprathermal electrons of different origins. 展开更多
关键词 MARS IONOSPHERE suprathermal electron pitch angle distribution
下载PDF
On the effect of pitch and yaw angles in oblique impacts of smallcaliber projectiles
7
作者 Teresa Fras 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期73-94,共22页
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin... A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance. 展开更多
关键词 Ballistic impact Small-caliber projectile Pitch and yaw impact angles SHADOWGRAPHY IMPETUS Afea Numerical simulations
下载PDF
A Systematic Study of the Forbidden Pitch in the CD Through-Pitch Curve for Beyond 130nm
8
作者 赵宇航 朱骏 曹永峰 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第5期889-892,共4页
The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1... The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast. 展开更多
关键词 forbidden pitch effective resist diffusion length OPC OAI deep-UV
下载PDF
Fault tolerant control of electric pitch control system based on single current detection
9
作者 李宏伟 付勃 +2 位作者 董海鹰 杨立霞 王睿敏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期63-70,共8页
In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is sing... In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified. 展开更多
关键词 electric pitch control fault tolerant control variable universe fuzzy control single current detection
下载PDF
Parametric investigation of railway fastenings into the formation and mitigation of short pitch corrugation
10
作者 Pan Zhang Shaoguang Li +1 位作者 Rolf Dollevoet Zili Li 《Railway Engineering Science》 EI 2024年第3期286-306,共21页
Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insight... Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes. 展开更多
关键词 Short pitch corrugation Fastening modelling and parameters Corrugation formation and mitigation Rail longitudinal compression modes Finite element vehicle-track interaction model
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
11
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
小型涡轮平面叶栅试验段设计
12
作者 季正鑫 龙启运 +1 位作者 祁明旭 杨长茂 《风机技术》 2024年第2期17-23,61,共8页
Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the hi... Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the high load turbine cascades, a linear turbine cascade test section is designed, which enables the Schlieren photography and static pressure measurement along the cascade profile can be conducted. Variable pitch is realized in the test section to achieve different Zweifel coefficients. Due to the capability limitation of the air supplier, the test section is designed to have only5 blade channels with shortened blade height to achieve high Mach number flow conditions. Numerical investigations were carried out to investigate the wall effect and its in fluences on the flow fields inside the test section. The result indicates that the shape of the connecting part of the test section has a significant influence on the flow similarity among different blade passages. With the proper design, a good repetition flow is achieved between neighbored blade passages. 展开更多
关键词 High-load Turbine Linear Cascade Variable Pitch Test Section
下载PDF
Frame Length Dependency for Fundamental Frequency Extraction in Noisy Speech
13
作者 Md. Saifur Rahman Any Chowdury +2 位作者 Nargis Parvin Arpita Saha Moinur Rahman 《Journal of Signal and Information Processing》 2024年第1期1-17,共17页
The fundamental frequency plays a significant part in understanding and perceiving the pitch of a sound. The pitch is a fundamental attribute employed in numerous speech-related works. For fundamental frequency extrac... The fundamental frequency plays a significant part in understanding and perceiving the pitch of a sound. The pitch is a fundamental attribute employed in numerous speech-related works. For fundamental frequency extraction, several algorithms have been developed which one to use relies on the signal’s characteristics and the surrounding noise. Thus, the algorithm’s noise resistance becomes more critical than ever for precise fundamental frequency estimation. Nonetheless, numerous state-of-the-art algorithms face struggles in achieving satisfying outcomes when confronted with speech recordings that are noisy with low signal-to-noise ratio (SNR) values. Also, most of the recent techniques utilize different frame lengths for pitch extraction. From this point of view, This research considers different frame lengths on male and female speech signals for fundamental frequency extraction. Also, analyze the frame length dependency on the speech signal analytically to understand which frame length is more suitable and effective for male and female speech signals specifically. For the validation of our idea, we have utilized the conventional autocorrelation function (ACF), and state-of-the-art method BaNa. This study puts out a potent idea that will work better for speech processing applications in noisy speech. From experimental results, the proposed idea represents which frame length is more appropriate for male and female speech signals in noisy environments. 展开更多
关键词 Pitch Estimation Fundamental Frequency BaNa ACF Frame Length
下载PDF
Analysis of Influence on Aerodynamic Noise of Wind Turbine Blades under Different Pitch Angles
14
作者 Ruirong He Houcai Liu +1 位作者 Huimin Kang Jiale Xi 《Open Journal of Applied Sciences》 2024年第5期1237-1250,共14页
Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribu... Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase. 展开更多
关键词 Pitch Angle Aerodynamic Noise Static Pressure Gradient Fluid Motion Numerical Simulation
下载PDF
Advantages of a Biomimetic Stiffness Profile in Pitching Flexible Fin Propulsion 被引量:5
15
作者 Paul Riggs Adrian Bowyer Julian Vincent 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期113-119,共7页
The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile ... The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile is defined as the variation in localchordwise bending stiffness (EI) of a fin, from leading to trailing edge.In this study, flexible fins with a standard NACA0012shape were tested alongside fins with a stiffness profile mimicking that of a Pumpkinseed Sunfish (Lepomis gibbosus).The finswere oscillated with a pitching sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force andstatic thrust were measured.Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significantimprovement in static thrust, compared to a fin of similar dimensions with a standard NACA0012 aerofoil profile.Thebiomimetic fin also produced thrust more consistently over each oscillation cycle.A comparison of fin materials of different stiffness showed that the improvement was due to the stiffness profile itself, andwas not simply an effect of altering the overall stiffness of the fin.Fins of the same stiffness profile were observed to follow thesame thrust-power curve, independent of the stiffness of the moulding material.Biomimetic fins were shown to produce up to26% greater thrust per watt of input power, within the experimental range. 展开更多
关键词 BIOMIMETIC PROPULSION STIFFNESS pitching FLEXIBLE FIN
下载PDF
The Effect of Body Pitching on Leg-Spring Behavior in Quadruped Running 被引量:4
16
作者 Qi Deng, Shigang Wang, Qinghua Liang, Jinqiu Mo School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期219-227,共9页
In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-be... In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-beam model were studied atdifferent speeds for different sets of body parameters respectively. Furthermore, different body inertias were used in bounding.We found that running speed exerts effect on leg performance by means of centrifugal force. The centrifugal force can be understoodas an enhancement to the natural frequency of the spring-mass system. The disadvantage of body pitching may beoffset by the great increase in centrifugal force at high speed. The results also reveal that body mass distribution might not be themain reason for the difference in maximal running speeds of different animals. 展开更多
关键词 body pitching leg performance running speed centrifugal force body inertia
下载PDF
Application of the Grey topological method to predict the effects of ship pitching 被引量:5
17
作者 孙李红 沈继红 《Journal of Marine Science and Application》 2008年第4期292-296,共5页
Ship motion,with six degrees of freedom,is a complex stochastic process.Sea wind and waves are the primary influencing factors.Prediction of ship motion is significant for ship navigation.To eliminate errors,a path pr... Ship motion,with six degrees of freedom,is a complex stochastic process.Sea wind and waves are the primary influencing factors.Prediction of ship motion is significant for ship navigation.To eliminate errors,a path prediction model incorporating ship pitching was developed using the Gray topological method,after analyzing ship pitching motions.With the help of simple introduction to Gray system theory,we selected a group of threshold values.Based on an analysis of ship pitch angle sequences over 40 second intervals,a Grey metabolism GM(1,1) model was established according to the time-series which every threshold corresponded to.Forecasting future ship motion with the GM(1,1) model allowed drawing of the forecast curve with effective forecasting points.The precision of the test results show that the model is accurate,and the forecast results are reliable. 展开更多
关键词 ship pitch grey system theory topological forecast GM(1 1)model
下载PDF
Baseball pitching kinematics,joint loads,and injury prevention 被引量:2
18
作者 Sakiko Oyama 《Journal of Sport and Health Science》 SCIE 2012年第2期80-91,共12页
There is a need for the prevention of upper extremity injuries that affect a large number of competitive baseball players.Currently available evidence alludes to three possible ways to prevent these injuries:1) regula... There is a need for the prevention of upper extremity injuries that affect a large number of competitive baseball players.Currently available evidence alludes to three possible ways to prevent these injuries:1) regulation of unsafe participation factors,2) implementation of exercise intervention to modify suboptimal physical characteristics,and 3) instructional intervention to correct improper pitching techniques.Of these three strategies,instruction of proper pitching technique is under-explored as a method of injury prevention.Therefore,the purpose of this review was to explore the utility of pitching technique instruction in prevention of pitching-related upper extremity injuries by presenting evidence linking pitching technique and pitching-related upper extremity injuries,as well as identifying considerations and potential barriers in pursuing this approach to prevent injuries.Various kinematic parameters measured using laboratory-based motion capture system have been linked to excessive joint loading,and thus pitching-related upper extremity injuries.As we gain more knowledge about the influence of pitching kinematics on joint loading and injury risk,it is important to start exploring ways to modify pitching technique through instruction and feedback while considering the specific skill components to address,mode of instruction,target population,duration of program,and ways to effectively collaborate with coaches and parents. 展开更多
关键词 Athletic training BASEBALL INSTRUCTION INTERVENTION pitching biomechanics Sport medicine
下载PDF
Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil 被引量:2
19
作者 Qin Wu Biao Huang Guoyu Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期64-74,共11页
The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effecti... The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier-Stokes flow computations. In the numerical simulations, the k-w shear stress trans- port (SST) turbulence model, coupled with a two-equation F-Reo transition model, is used for the turbulence closure. Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0° to 15° then back to 0° at a moderate Reynolds number Re = 7.5 × 105. The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case, it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pres- sure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observed and the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times, which is responsible for just one fluctuation in the hydrody- namic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows, and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region. 展开更多
关键词 Transient flow structure pitching hydrofoilFinite-time Lyapunov exponent Lagrangian coherentstructures
下载PDF
Dynamic response of liquid-filled rectangular tank with elastic appendages under pitching excitation 被引量:2
20
作者 吕敬 李俊峰 王天舒 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第3期351-359,共9页
Nonlinear dynamics of liquid-filled rectangular tank with elastic appendages are studied. Based on the assumption of ideal fluid, the coupling dynamic equations of rigid tank, elastic appendages and liquid fuel are de... Nonlinear dynamics of liquid-filled rectangular tank with elastic appendages are studied. Based on the assumption of ideal fluid, the coupling dynamic equations of rigid tank, elastic appendages and liquid fuel are derived using H-O principle. In the case of pitch excitation, the modified potential function and wave height function are introduced to describe the moving boundary of fluid, then Galerkin's method is used to discretize the dynamic equations into ordinary differential equations. The natural frequencics of the coupling system are formulated in liquid depth, the length of the tank, etc. The formulae are confirmed by numerical simulations, which also show that the effects of liquid and elastic appendages on the attitude angular of rigid. 展开更多
关键词 liquid-filled rectangular tank elastic appendage nonlinear dynamics natural frequency PITCH
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部