Studies have been made on the source mechanism of acoustic emission produced by pitting corrosion. Methods for identifying pitting corrosion-related AE signals were proposed and the magnitude of surface displacement d...Studies have been made on the source mechanism of acoustic emission produced by pitting corrosion. Methods for identifying pitting corrosion-related AE signals were proposed and the magnitude of surface displacement due to single pitting was estimated. It is concluded that differentiation between background noise and corrosion induced genuine AE signal is possible through using plate wave acoustic emission theory combined with parameter analysis method.展开更多
Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ ...Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10-20μm in diameter was formed as a cireinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.展开更多
A new family of resource saving, high chromium and manganese super duplex stainless steels (DSSs), with a composition in mass percent, % of Cr 0.29, Mn 0.12, Ni 2.0, Mo i. 0, and N 0. 51-0. 68, has been developed by...A new family of resource saving, high chromium and manganese super duplex stainless steels (DSSs), with a composition in mass percent, % of Cr 0.29, Mn 0.12, Ni 2.0, Mo i. 0, and N 0. 51-0. 68, has been developed by examining the effect of N on the microstructure, mechanical properties and corrosion properties. The results show that these alloys have a balanced ferrite-austenite relation. The austenite volume fraction decreases with the solution treatment temperature, but it increases with an increase in N content. The increases in nitrogen enhance the ultimate tensile strength (UTS) and reduce the ductility of the material slightly. The pitting corrosion potential increases first and then decreases with an increase in nitrogen content when the amount of N arrives to 0.68%. The yield stress and ultimate tensile strength of solution treated samples were more than 680 and 900 MPa, the elongation of experimental alloys are higher than 30%, respectively, what is more, the pitting potentials were beyond 1 100 mV.展开更多
基金This work was supported by the National Key Fundamental Research Project of China (G19990650).
文摘Studies have been made on the source mechanism of acoustic emission produced by pitting corrosion. Methods for identifying pitting corrosion-related AE signals were proposed and the magnitude of surface displacement due to single pitting was estimated. It is concluded that differentiation between background noise and corrosion induced genuine AE signal is possible through using plate wave acoustic emission theory combined with parameter analysis method.
基金Item Sponsored by National Science and Technology Major Project of the Ministry of Science and Technology of China(2011ZX05016-004)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE25B00)
文摘Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10-20μm in diameter was formed as a cireinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.
基金Item Sponsored by Innovation Fund of Education Commission of Shanghai Municipality of China(09yz20)
文摘A new family of resource saving, high chromium and manganese super duplex stainless steels (DSSs), with a composition in mass percent, % of Cr 0.29, Mn 0.12, Ni 2.0, Mo i. 0, and N 0. 51-0. 68, has been developed by examining the effect of N on the microstructure, mechanical properties and corrosion properties. The results show that these alloys have a balanced ferrite-austenite relation. The austenite volume fraction decreases with the solution treatment temperature, but it increases with an increase in N content. The increases in nitrogen enhance the ultimate tensile strength (UTS) and reduce the ductility of the material slightly. The pitting corrosion potential increases first and then decreases with an increase in nitrogen content when the amount of N arrives to 0.68%. The yield stress and ultimate tensile strength of solution treated samples were more than 680 and 900 MPa, the elongation of experimental alloys are higher than 30%, respectively, what is more, the pitting potentials were beyond 1 100 mV.