Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of obje...Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.展开更多
We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach-Zehnder interferometer, the interference of the ...We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach-Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single- pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance.展开更多
Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remot...Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.展开更多
A two-stage object recognition algorithm with the presence of occlusion is presented for microassembly. Coarse localization determines whether template is in image or not and approximately where it is, and fine locali...A two-stage object recognition algorithm with the presence of occlusion is presented for microassembly. Coarse localization determines whether template is in image or not and approximately where it is, and fine localization gives its accurate position. In coarse localization, local feature, which is invariant to translation, rotation and occlusion, is used to form signatures. By comparing signature of template with that of image, approximate transformation parameter from template to image is obtained, which is used as initial parameter value for fine localization. An objective function, which is a function of transformation parameter, is constructed in fine localization and minimized to realize sub-pixel localization accuracy. The occluded pixels are not taken into account in objective function, so the localization accuracy will not be influenced by the occlusion.展开更多
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
随着当今时代科技和人工智能的高速发展,人们越来越倾向于无人驾驶这项技术。考虑到安全问题,针对驾驶过程中交通标志的实时检测问题,在YOLOv5模型的基础上做出改进,提出了一种轻量化的交通标志检测算法。在模型的特征融合部分加入了注...随着当今时代科技和人工智能的高速发展,人们越来越倾向于无人驾驶这项技术。考虑到安全问题,针对驾驶过程中交通标志的实时检测问题,在YOLOv5模型的基础上做出改进,提出了一种轻量化的交通标志检测算法。在模型的特征融合部分加入了注意力机制,可以使模型更加突出目标特征。在检测层前加入一种轻量化的亚像素卷积层,在不增加计算量的基础上,有效地提高检测特征图的分辨率。对损失函数CIoU(Complete intersection over union)加以改进,加快了网络的收敛速度,并且收敛效果较改进前有了一定提升。实验结果表明,本文模型准确率可达到90.6%,较基础网络提高了14.5%,检测速度可达到70帧/s,基本满足对交通标志的实时精准检测。展开更多
文摘Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61405130 and 61320106015)
文摘We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach-Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single- pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance.
文摘Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.
基金This project is supported by National Natural Science Foundation of China (No. 50275078)
文摘A two-stage object recognition algorithm with the presence of occlusion is presented for microassembly. Coarse localization determines whether template is in image or not and approximately where it is, and fine localization gives its accurate position. In coarse localization, local feature, which is invariant to translation, rotation and occlusion, is used to form signatures. By comparing signature of template with that of image, approximate transformation parameter from template to image is obtained, which is used as initial parameter value for fine localization. An objective function, which is a function of transformation parameter, is constructed in fine localization and minimized to realize sub-pixel localization accuracy. The occluded pixels are not taken into account in objective function, so the localization accuracy will not be influenced by the occlusion.
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
文摘随着当今时代科技和人工智能的高速发展,人们越来越倾向于无人驾驶这项技术。考虑到安全问题,针对驾驶过程中交通标志的实时检测问题,在YOLOv5模型的基础上做出改进,提出了一种轻量化的交通标志检测算法。在模型的特征融合部分加入了注意力机制,可以使模型更加突出目标特征。在检测层前加入一种轻量化的亚像素卷积层,在不增加计算量的基础上,有效地提高检测特征图的分辨率。对损失函数CIoU(Complete intersection over union)加以改进,加快了网络的收敛速度,并且收敛效果较改进前有了一定提升。实验结果表明,本文模型准确率可达到90.6%,较基础网络提高了14.5%,检测速度可达到70帧/s,基本满足对交通标志的实时精准检测。