It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical fra...It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.展开更多
Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment. Historically, groundwater level monitoring wells in Beijing Plai...Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment. Historically, groundwater level monitoring wells in Beijing Plain, China, were installed for assessing groundwater resources and for monitoring the cone of depression. Monitoring wells are clustered around well fields and urban areas. There is urgent need to upgrade the existing monitoring wells to a regional groundwater level monitoring network to acquire information for integrated water resources management. A new method was proposed for designing a regional groundwater level monitoring network. The method is based on groundwater regime zone mapping. Groundwater regime zone map delineates distinct areas of possible different groundwater level variations and is useful for locating groundwater monitoring wells. This method was applied to Beijing Plain to upgrade a regional groundwater level monitoring network.展开更多
The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow a...The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.展开更多
Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that a...Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics.展开更多
Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobi...Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.展开更多
The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source poll...The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source pollution from cells is estimated using the export coefficients of different land use types. The non-point source pollution from a land cell should all go into the closest fiver reach, so it is distributed according to the terrain of the plain river network area and the positions of land cells and river network reaches. A relationship between a single land cell and its pollution-receiving reach can be determined using this system. In view of the above, a spatial distribution model of the rainfall runoff and non-point source pollution in reaches of a plain river network area was established. This model can provide technological support for further research on the dynamic effects of non-point source pollution on water quality.展开更多
The Guanzhong Plain urban agglomeration is a response to the Belt and Road Initiative in Northwest China that aims to promote regional development.The direct impact of high-speed railway construction is to shorten the...The Guanzhong Plain urban agglomeration is a response to the Belt and Road Initiative in Northwest China that aims to promote regional development.The direct impact of high-speed railway construction is to shorten the spatial-temporal distance among regions,improve the accessibility of regional transportation,and promote socioeconomic linkages.From the perspective of accessibility,this study analyzes the impact of high-speed railway construction on the spatial pattems and county-level economic relationships of the Guanzhong Plain urban agglom-eration.The results show that the construction of high-speed railway significantly improves regional accessibility,increases the potential for urban economic development,and gradually narrows the gaps in economic potential among cities.The construction of high-speed railway has increased the intensity of extenal economic relations among numerous counties in the Guanzhong Plain urban agglomeration,and most of the areas with increased connections are located in the direction of routes extension.The development of the internal economic network of the Guanzhong Plain urban agglomeration is unbalanced,and a complex network is gradually emerging with a few large cities at the core,but the construction of high-speed railway is changing the struicture of the economic network.In general,a certain degree of intrinsic coupling exists between regional accessibility change and the evolution of economic relations caused by high-speed railway,reflecting the requirements of the regional overall development strategy.展开更多
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base...Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.展开更多
Although frequently encountered in many practical applications, singular nonlinear optimization has been always recognized as a difficult problem. In the last decades, classical numerical techniques have been proposed...Although frequently encountered in many practical applications, singular nonlinear optimization has been always recognized as a difficult problem. In the last decades, classical numerical techniques have been proposed to deal with the singular problem. However, the issue of numerical instability and high computational complexity has not found a satisfactory solution so far. In this paper, we consider the singular optimization problem with bounded variables constraint rather than the common unconstraint model. A novel neural network model was proposed for solving the problem of singular convex optimization with bounded variables. Under the assumption of rank one defect, the original difficult problem is transformed into nonsingular constrained optimization problem by enforcing a tensor term. By using the augmented Lagrangian method and the projection technique, it is proven that the proposed continuous model is convergent to the solution of the singular optimization problem. Numerical simulation further confirmed the effectiveness of the proposed neural network approach.展开更多
基金Under the auspices of the Taishan Scholars Project Special FundsNational Natural Science Fundation of China(No.42077434,42001199)Youth Innovation Technology Project of Higher School in Shandong Province(No.2019RWG016)。
文摘It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.
文摘Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment. Historically, groundwater level monitoring wells in Beijing Plain, China, were installed for assessing groundwater resources and for monitoring the cone of depression. Monitoring wells are clustered around well fields and urban areas. There is urgent need to upgrade the existing monitoring wells to a regional groundwater level monitoring network to acquire information for integrated water resources management. A new method was proposed for designing a regional groundwater level monitoring network. The method is based on groundwater regime zone mapping. Groundwater regime zone map delineates distinct areas of possible different groundwater level variations and is useful for locating groundwater monitoring wells. This method was applied to Beijing Plain to upgrade a regional groundwater level monitoring network.
文摘The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.
文摘Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics.
基金supported in part by National Natural Science Foundation of China Grant 61672524the Fundamental Research Funds for the Central University+1 种基金the Research Funds of Renmin University of China, 2015030273National Key Technology Support Program 2014BAK12B06
文摘Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China (Grant No. 2008X07101-005)
文摘The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source pollution from cells is estimated using the export coefficients of different land use types. The non-point source pollution from a land cell should all go into the closest fiver reach, so it is distributed according to the terrain of the plain river network area and the positions of land cells and river network reaches. A relationship between a single land cell and its pollution-receiving reach can be determined using this system. In view of the above, a spatial distribution model of the rainfall runoff and non-point source pollution in reaches of a plain river network area was established. This model can provide technological support for further research on the dynamic effects of non-point source pollution on water quality.
基金supported by the National Natural Science Foundation of China(41831284).
文摘The Guanzhong Plain urban agglomeration is a response to the Belt and Road Initiative in Northwest China that aims to promote regional development.The direct impact of high-speed railway construction is to shorten the spatial-temporal distance among regions,improve the accessibility of regional transportation,and promote socioeconomic linkages.From the perspective of accessibility,this study analyzes the impact of high-speed railway construction on the spatial pattems and county-level economic relationships of the Guanzhong Plain urban agglom-eration.The results show that the construction of high-speed railway significantly improves regional accessibility,increases the potential for urban economic development,and gradually narrows the gaps in economic potential among cities.The construction of high-speed railway has increased the intensity of extenal economic relations among numerous counties in the Guanzhong Plain urban agglomeration,and most of the areas with increased connections are located in the direction of routes extension.The development of the internal economic network of the Guanzhong Plain urban agglomeration is unbalanced,and a complex network is gradually emerging with a few large cities at the core,but the construction of high-speed railway is changing the struicture of the economic network.In general,a certain degree of intrinsic coupling exists between regional accessibility change and the evolution of economic relations caused by high-speed railway,reflecting the requirements of the regional overall development strategy.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51190091)the National Natural Science Foundation of China(Grant No.51009045)the Open Research Fund Program of the State Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University(Grant No.2012B094)
文摘Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.
文摘Although frequently encountered in many practical applications, singular nonlinear optimization has been always recognized as a difficult problem. In the last decades, classical numerical techniques have been proposed to deal with the singular problem. However, the issue of numerical instability and high computational complexity has not found a satisfactory solution so far. In this paper, we consider the singular optimization problem with bounded variables constraint rather than the common unconstraint model. A novel neural network model was proposed for solving the problem of singular convex optimization with bounded variables. Under the assumption of rank one defect, the original difficult problem is transformed into nonsingular constrained optimization problem by enforcing a tensor term. By using the augmented Lagrangian method and the projection technique, it is proven that the proposed continuous model is convergent to the solution of the singular optimization problem. Numerical simulation further confirmed the effectiveness of the proposed neural network approach.