The separation of phases after the stability composition at a plait point is exceeded has significant effect on the reactions during spontaneous emulsification, but experimental efforts to obtain accurate information ...The separation of phases after the stability composition at a plait point is exceeded has significant effect on the reactions during spontaneous emulsification, but experimental efforts to obtain accurate information are extremely difficult, because even the smallest scattering of the numbers has a large effect on the result. In the present contribution a model system was applied that closely mirrored experimental values and the mass ratio of the two phases could be calculated with high accuracy. Extrapolation of the ratio between phase masses towards the critical composition showed the two phase masses each close to 0.5, while a composition with a miniscule difference from this composition extrapolated to 1.0. The results showed spontaneous emulsification between solutions at the plait point and water to consist of two processes;an initial extremely fast reaction and a slower process between the aqueous phase formed in the primary emulsification and water.展开更多
文摘The separation of phases after the stability composition at a plait point is exceeded has significant effect on the reactions during spontaneous emulsification, but experimental efforts to obtain accurate information are extremely difficult, because even the smallest scattering of the numbers has a large effect on the result. In the present contribution a model system was applied that closely mirrored experimental values and the mass ratio of the two phases could be calculated with high accuracy. Extrapolation of the ratio between phase masses towards the critical composition showed the two phase masses each close to 0.5, while a composition with a miniscule difference from this composition extrapolated to 1.0. The results showed spontaneous emulsification between solutions at the plait point and water to consist of two processes;an initial extremely fast reaction and a slower process between the aqueous phase formed in the primary emulsification and water.