A new type of grain-interior planar defect in a ceramic phase in TiC doped cemented tungsten carbides was discovered.It is unique in that the monolayers of metal atoms exist stably in ceramic grains.The planar defects...A new type of grain-interior planar defect in a ceramic phase in TiC doped cemented tungsten carbides was discovered.It is unique in that the monolayers of metal atoms exist stably in ceramic grains.The planar defects were induced by the ordered heteroatoms distributing on certain crystal planes of the matrix,which are distinct from the known planar defects such as phase-,grain-,and twin-boundaries,stacking faults,and complexions.Detailed characterization on the atomic scale was performed for the composition,structure,and crystallography of the planar defects,and their energy state and stability were evaluated by modeling.It was found that the Ti monolayer assists nucleation of the new WC crystal along the normal direction to its basal plane.Due to the disturbance of the heteroatom layer,the deposition of W and C atoms deviates from the regular sites occupied in the perfect crystal lattice,resulting in variations of the W–C arrangement in the grain structure.Experiments confirmed that tailoring the distribution density of the planar defects could give the best comprehensive mechanical performance with simultaneously outstanding strength and fracture toughness in the materials containing the grain-interior planar defects.This study provides a new strategy to greatly enhance the mechanical properties of materials by introducing and tailoring planar defects in the grain interiors.展开更多
The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on parti...The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.展开更多
基金supported by the National Natural Science Foundation of China(92163107,52171061,52101003,52271085,and 52101032).
文摘A new type of grain-interior planar defect in a ceramic phase in TiC doped cemented tungsten carbides was discovered.It is unique in that the monolayers of metal atoms exist stably in ceramic grains.The planar defects were induced by the ordered heteroatoms distributing on certain crystal planes of the matrix,which are distinct from the known planar defects such as phase-,grain-,and twin-boundaries,stacking faults,and complexions.Detailed characterization on the atomic scale was performed for the composition,structure,and crystallography of the planar defects,and their energy state and stability were evaluated by modeling.It was found that the Ti monolayer assists nucleation of the new WC crystal along the normal direction to its basal plane.Due to the disturbance of the heteroatom layer,the deposition of W and C atoms deviates from the regular sites occupied in the perfect crystal lattice,resulting in variations of the W–C arrangement in the grain structure.Experiments confirmed that tailoring the distribution density of the planar defects could give the best comprehensive mechanical performance with simultaneously outstanding strength and fracture toughness in the materials containing the grain-interior planar defects.This study provides a new strategy to greatly enhance the mechanical properties of materials by introducing and tailoring planar defects in the grain interiors.
基金Project supported by the Major National Science and Technology Special Projects(No.2009ZX02308)the Natural Science Foundation for the Youth of Hebei Province(Nos.F2012202094,F2015202267)the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology(No.2013010)
文摘The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.