This paper considers the effect of the anisotropic surface tension on the morphological stability of the planar interface during directional solidification. When the expression exhibiting the four-fold symmetry is inc...This paper considers the effect of the anisotropic surface tension on the morphological stability of the planar interface during directional solidification. When the expression exhibiting the four-fold symmetry is included, the modified absolute stability criterion is obtained by employing the multi-variable expansion method. The linear stability analysis reveals that for the given temperature gradient, as the anisotropic surface tension parameter increases, the stability zone tends to decrease.展开更多
The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile. Novel experiment...The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile. Novel experimental apparatus is constructed to provide a temperature gradient of about 0.37 K/mm. Under this small temperature gradient, the planar interface instability depends largely on the crystallographic orientation. It is shown experimentally that the effect of interfacial energy anisotropy on planar interface stability cannot be neglected even in a small temperature gradient system. Higher interfacial energy anisotropy leads the planar interface to become more unstable, which is different from the stabilizing effect of the interfacial energy on the planar interface. The experimental results are in agreement with previous theoretical calculations and phase field simulations.展开更多
Based on vectorial Debye theory, tight focusing of radially and azimuthally polarized vortex beams passing through a dielectric interface are studied. The intensity distribution in the focal region is illustrated by n...Based on vectorial Debye theory, tight focusing of radially and azimuthally polarized vortex beams passing through a dielectric interface are studied. The intensity distribution in the focal region is illustrated by numerical calculations. We show the influence of numerical-aperture (NA) on the full-width at half maximum (FWHM) of the focal spot or the focal hole. It has been found that compared with the azimuthally polarized Besse^Gaussian (BG) beams, the longitudinal component in the z direction of the radially polarized BG beams has no influence on the FWHM of the focal spot and hole, but enhances the total light intensity.展开更多
By using the finite-part integral concepts and limit technique,the hypersingular inte- grodifferential equations ofthree-dimensional(3D)planar interface crack were obtained; then thedominant-part analysis of 2D hypers...By using the finite-part integral concepts and limit technique,the hypersingular inte- grodifferential equations ofthree-dimensional(3D)planar interface crack were obtained; then thedominant-part analysis of 2D hypersingular integral was further usedto investigate the stress fields near the crack front theoretically,and the accurate formulae were obtained for the singular stressfields and the complex stress intensity factors.展开更多
Scanning speed is a critical parameter for laser process, which can play a key role in the microstruc- ture evolution of laser melting. In the laser melting of single crystal superalloy, the effects of scanning speed ...Scanning speed is a critical parameter for laser process, which can play a key role in the microstruc- ture evolution of laser melting. In the laser melting of single crystal superalloy, the effects of scanning speed were investigated by experimental analysis and computational simulation. The laser was scanning along [710] direction on (001) surface in different speeds. Solidification microstructures of dendrites growth direction and the primary dendritic spacing were analyzed by metallograph. Besides, a planar interface during solidification was taken into attention, Experiment results indicated that the primary dendritic spacing and thickness of planar interface decrease with the increase of speed. Through simu- lation, distribution of dendrites growth velocity and thermal gradient along dendrite growth direction were calculated, and the simulation of dendrites growth direction agreed with the experiment results. Additionally, a constant value was acquired which can be used to predict the primary dendritic spacing. Moreover, according to curve-fitting method and inequality relation, a model was proposed to predict the thickness of planar interface.展开更多
基金Project supported by the National Basic Research Program of China (the Project 973) (Grant No 2006CB605205)the National Natural Science Foundation of China (Grant No 10672019)
文摘This paper considers the effect of the anisotropic surface tension on the morphological stability of the planar interface during directional solidification. When the expression exhibiting the four-fold symmetry is included, the modified absolute stability criterion is obtained by employing the multi-variable expansion method. The linear stability analysis reveals that for the given temperature gradient, as the anisotropic surface tension parameter increases, the stability zone tends to decrease.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50971102 and 50901061)the National Basic Research Program of China (Grant No. 2011CB610402)+2 种基金the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China (Grant Nos. 02-TZ-2008 and 36-TP-2009)the Programme of Introducing Talents of Discipline to Universities,China (Grant No. 08040)the National Science Foundation for Post-doctoral Scientists of China(Grant No. 20110491689)
文摘The morphological stability of a planar interface with different crystallographic orientations is studied under a small positive temperature gradient using a transparent model alloy of succinonitrile. Novel experimental apparatus is constructed to provide a temperature gradient of about 0.37 K/mm. Under this small temperature gradient, the planar interface instability depends largely on the crystallographic orientation. It is shown experimentally that the effect of interfacial energy anisotropy on planar interface stability cannot be neglected even in a small temperature gradient system. Higher interfacial energy anisotropy leads the planar interface to become more unstable, which is different from the stabilizing effect of the interfacial energy on the planar interface. The experimental results are in agreement with previous theoretical calculations and phase field simulations.
基金Supported by the National Natural Science Foundation of China under Grant No 60477041, the Key Project of Science and Technology of Fujian Province under Grant No 2007H0027, and the Foundation of Science and Technology Development of Southwest Jiaotong University of China under Grant No 2006B01.
文摘Based on vectorial Debye theory, tight focusing of radially and azimuthally polarized vortex beams passing through a dielectric interface are studied. The intensity distribution in the focal region is illustrated by numerical calculations. We show the influence of numerical-aperture (NA) on the full-width at half maximum (FWHM) of the focal spot or the focal hole. It has been found that compared with the azimuthally polarized Besse^Gaussian (BG) beams, the longitudinal component in the z direction of the radially polarized BG beams has no influence on the FWHM of the focal spot and hole, but enhances the total light intensity.
基金the Foundation of Solid Mechanics Open Research Laboratory of State Education Commission at Tongji Universitythe National Natural Science Foundation
文摘By using the finite-part integral concepts and limit technique,the hypersingular inte- grodifferential equations ofthree-dimensional(3D)planar interface crack were obtained; then thedominant-part analysis of 2D hypersingular integral was further usedto investigate the stress fields near the crack front theoretically,and the accurate formulae were obtained for the singular stressfields and the complex stress intensity factors.
基金financially supported by the National Natural Science Foundation of China (NSFC) under grant Nos.51401210 and 51271186
文摘Scanning speed is a critical parameter for laser process, which can play a key role in the microstruc- ture evolution of laser melting. In the laser melting of single crystal superalloy, the effects of scanning speed were investigated by experimental analysis and computational simulation. The laser was scanning along [710] direction on (001) surface in different speeds. Solidification microstructures of dendrites growth direction and the primary dendritic spacing were analyzed by metallograph. Besides, a planar interface during solidification was taken into attention, Experiment results indicated that the primary dendritic spacing and thickness of planar interface decrease with the increase of speed. Through simu- lation, distribution of dendrites growth velocity and thermal gradient along dendrite growth direction were calculated, and the simulation of dendrites growth direction agreed with the experiment results. Additionally, a constant value was acquired which can be used to predict the primary dendritic spacing. Moreover, according to curve-fitting method and inequality relation, a model was proposed to predict the thickness of planar interface.