The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Fir...The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.展开更多
In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore...In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses.展开更多
Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal stra...Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angle planar space which has no circular cavity is constructed; then the scattering solution which satisfies the free stress conditions of the two right-angle boundaries with the circular cavity existing in the space is formulated. Therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity. It can be solved by using limit items in the infinite series which can give a high computation precision. An example is given to illustrate the variations of the tangential stress at the boundary of the circular cavity due to different dimensionless wave numbers, the location of the circular cavity, the loading center and the distributing range of the out-of-plane loading. The results show the efficiency and effectiveness of the mothod introduced here.展开更多
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ...To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.展开更多
The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally b...The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results.展开更多
This paper presents a direct method to find the internal faces. It uses four sets of information: get the coordinates of each point on the 3D composite objects; (~)based on the 3D coordinates to calculate all the p...This paper presents a direct method to find the internal faces. It uses four sets of information: get the coordinates of each point on the 3D composite objects; (~)based on the 3D coordinates to calculate all the plane equation of two objects; (~)calculate all the intersecting lines of the two objects and exclude the intersecting lines which are not within the scope of the plane;finding the internal face, the remaining intersecting lines formed the plane is the internal face of the two objects. We proposed a new algorithm for finding internal faces. This algorithm could be adapted to any regular composite objects .The algorithm works well for finding internal faces.展开更多
The requirement of stress analysis and measurement is increasing with the great development of heterogeneous structures and strain engineering in the field of semiconductors.Micro-Raman spectroscopy is an effective me...The requirement of stress analysis and measurement is increasing with the great development of heterogeneous structures and strain engineering in the field of semiconductors.Micro-Raman spectroscopy is an effective method for the measurement of intrinsic stress in semiconductor structures.However,most existing applications of Raman-stress measurement use the classical model established on the (001) crystal plane.A non-negligible error may be introduced when the Raman data are detected on surfaces/cross-sections of different crystal planes.Owing to crystal symmetry,the mechanical,physical and optical parameters of different crystal planes show obvious anisotropy,leading to the Raman-mechanical relationship dissimilarity on the different crystal planes.In this work,a general model of stress measurement on crystalline silicon with an arbitrary crystal plane was presented based on the elastic mechanics,the lattice dynamics and the Raman selection rule.The wavenumberstress factor that is determined by the proposed method is suitable for the measured crystal plane.Detailed examples for some specific crystal planes were provided and the theoretical results were verified by experiments.展开更多
The phase-plane analysis is used to study the traveling wave solution of a recently proposed higher-order traffic flow model under the Lagrange coordinate system. The analysis identifies the types and stabilities of t...The phase-plane analysis is used to study the traveling wave solution of a recently proposed higher-order traffic flow model under the Lagrange coordinate system. The analysis identifies the types and stabilities of the equilibrium solutions, and the overall distribution structure of the nearby solutions is drawn in the phase plane for the further analysis and comparison. The analytical and numerical results are in agreement, and may help to explain the simulated phenomena, such as the stop-and-go wave and oscillation near a bottleneck. The findings demonstrate the model ability to describe the complexity of congested traffic.展开更多
文摘The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.
文摘In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses.
文摘Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angle planar space which has no circular cavity is constructed; then the scattering solution which satisfies the free stress conditions of the two right-angle boundaries with the circular cavity existing in the space is formulated. Therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity. It can be solved by using limit items in the infinite series which can give a high computation precision. An example is given to illustrate the variations of the tangential stress at the boundary of the circular cavity due to different dimensionless wave numbers, the location of the circular cavity, the loading center and the distributing range of the out-of-plane loading. The results show the efficiency and effectiveness of the mothod introduced here.
基金supported by Project of the National Natural Science Foundation of China (No.62073256, 61773305)the Key Science and Technology Program of Shaanxi Province (No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project (No.2020KJRC0041)。
文摘To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.
基金Consultative Program of the Chinese Academy of Engineeringthe foundation for Excellent Young of Hunan Scientific Committee+1 种基金the National Natural Science Foundation of Hunan Provincethe Science and Research Program of Hunan Province
文摘The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results.
文摘This paper presents a direct method to find the internal faces. It uses four sets of information: get the coordinates of each point on the 3D composite objects; (~)based on the 3D coordinates to calculate all the plane equation of two objects; (~)calculate all the intersecting lines of the two objects and exclude the intersecting lines which are not within the scope of the plane;finding the internal face, the remaining intersecting lines formed the plane is the internal face of the two objects. We proposed a new algorithm for finding internal faces. This algorithm could be adapted to any regular composite objects .The algorithm works well for finding internal faces.
基金This work is financially supported by the National Natural Science Foundation of China(Grants 11772223,11772227,and 61727810).
文摘The requirement of stress analysis and measurement is increasing with the great development of heterogeneous structures and strain engineering in the field of semiconductors.Micro-Raman spectroscopy is an effective method for the measurement of intrinsic stress in semiconductor structures.However,most existing applications of Raman-stress measurement use the classical model established on the (001) crystal plane.A non-negligible error may be introduced when the Raman data are detected on surfaces/cross-sections of different crystal planes.Owing to crystal symmetry,the mechanical,physical and optical parameters of different crystal planes show obvious anisotropy,leading to the Raman-mechanical relationship dissimilarity on the different crystal planes.In this work,a general model of stress measurement on crystalline silicon with an arbitrary crystal plane was presented based on the elastic mechanics,the lattice dynamics and the Raman selection rule.The wavenumberstress factor that is determined by the proposed method is suitable for the measured crystal plane.Detailed examples for some specific crystal planes were provided and the theoretical results were verified by experiments.
基金Project supported by the National Natural Science Foundation of China(No.11072141)the Shanghai Program for Innovative Research Team in Universities,the Graduate Innovation Foundation of Shanghai University(No.SHUCX101078)and the University Research Committee,HKU SPACE Research Fund and Faculty of Engineering Top-up Grant of the University of Hong Kong(No.201007176059)
文摘The phase-plane analysis is used to study the traveling wave solution of a recently proposed higher-order traffic flow model under the Lagrange coordinate system. The analysis identifies the types and stabilities of the equilibrium solutions, and the overall distribution structure of the nearby solutions is drawn in the phase plane for the further analysis and comparison. The analytical and numerical results are in agreement, and may help to explain the simulated phenomena, such as the stop-and-go wave and oscillation near a bottleneck. The findings demonstrate the model ability to describe the complexity of congested traffic.