Sliding planes of PTFE are commonly used because of their excellent tribological properties. However, especially in cases of high contact pressures, PTFE suffers from its comparatively poor mechanical properties. This...Sliding planes of PTFE are commonly used because of their excellent tribological properties. However, especially in cases of high contact pressures, PTFE suffers from its comparatively poor mechanical properties. This paper presents a sliding construction developed within an innovative experimental test-setup to enable experimental investigation of large-scale concrete members subjected to punching shear. To fulfill the special demands of the new test-setup, greased, only 0.5 mm thin sheets of PTFE were used to minimize friction between the bearing construction and the test specimen. This highly effective sliding construction leads to a dynamic friction coefficient μ<sub>d,max</sub> between 0.0065 and 0.0035 while the static friction coefficient μ<sub>s</sub> remains below 0.0048. Simultaneously, compressive axial stresses of more than 60 MPa occur. The paper highlights major aspects of the sliding plane’s development and demonstrates its sliding abilities.展开更多
A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were ...A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a .finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions.展开更多
The optimum design of the highway excavation slope angle is one of the most important problems to the highway construction and to the slope improvement. The Dawu Section of Jingzhu (Beijing Zhuhai) Highway is taken a...The optimum design of the highway excavation slope angle is one of the most important problems to the highway construction and to the slope improvement. The Dawu Section of Jingzhu (Beijing Zhuhai) Highway is taken as an example to illustrate the study method for excavation slope angle design. The analysis of the engineering condition from different angles with different factors shows that the stability of the slope is calculated by using residual pushing force and the Sarma method. Then the sensitive analysis of the slope stability is conducted by using residual pushing force method. Finally, the optimum angle of design is presented on the precondition of ensuring the whole stability of slope and the economic reasonability. The study results show that the most sensitive factors are the shear strength parameter and the seismic force, and that the optimum excavation slope angle is 60°.展开更多
Haibat Sultan Mountain is a long range with elevation of about 860 m (a.s.l.);the PilaSpi Formation forms its carapace in Koya vicinity, with relief difference of about 300 m from Koisanjaq plain. The PilaSpi Formatio...Haibat Sultan Mountain is a long range with elevation of about 860 m (a.s.l.);the PilaSpi Formation forms its carapace in Koya vicinity, with relief difference of about 300 m from Koisanjaq plain. The PilaSpi Formation consists of well thickly to massively bedded dolostone and dolomitic limestone with thickness of about 120 m in Koya vicinity. The main trend is NW - SE being a limb of Bustana anticline representing part of the southwestern limb, with dip amount that ranges from (15 - 30). On 11th of November 2015 a landslide had occurred after a heavy rainfall along Koya - Dukan main road. The type of the slide was plane sliding due to daylight slope, which was formed after the road cut. The length of the slide area: along the road is 90 m with height of 40 m forming almost a parallelogram shape;the thickness of the slid beds is about 2.5 m. The estimated volume of the slid mass is 9000 m<sup>3</sup>. The main cause of the landslide is the presence of daylight slope, high slope angle;more than the dip angle, presence of old crack surfaces which are filled by reddish brown clayey residual soil. After the he heavy rain fall, which lasted for 20 hours, the infiltrated rain water in the bedding planes in the well bedded, cracked, and jointed beds has increased the pore pressure and decreased the internal friction angle;therefore, the sliding has occurred. The root of the slid mass is below the base of the paved road;therefore, that part which is above the paved road has slid. The remaining part is highly cracked and partly accumulated in the base of the slid mass. Fortunately, the height of the slid mass is only 40 m and the relief difference between the crown area and the toe area is about 50 m;otherwise the slid mass would be larger than the present slid mass. From the field inspection, it is very clear that the involved area is very unstable and in critical equilibrium. The presence of daylight bedding above the crown area, clayey soil in the fractures and open joints and steep slope all are very favorable conditions for triggering the unstable slope, consequently developing of another landslide with larger mass.展开更多
文摘Sliding planes of PTFE are commonly used because of their excellent tribological properties. However, especially in cases of high contact pressures, PTFE suffers from its comparatively poor mechanical properties. This paper presents a sliding construction developed within an innovative experimental test-setup to enable experimental investigation of large-scale concrete members subjected to punching shear. To fulfill the special demands of the new test-setup, greased, only 0.5 mm thin sheets of PTFE were used to minimize friction between the bearing construction and the test specimen. This highly effective sliding construction leads to a dynamic friction coefficient μ<sub>d,max</sub> between 0.0065 and 0.0035 while the static friction coefficient μ<sub>s</sub> remains below 0.0048. Simultaneously, compressive axial stresses of more than 60 MPa occur. The paper highlights major aspects of the sliding plane’s development and demonstrates its sliding abilities.
基金supported by the Innovation Program for College Graduate of Jiangsu Province of 2007 (Grant No. CX07B_133Z)
文摘A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a .finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions.
基金theNationalNaturalScienceFoundationofChina (No .40 0 72 0 85 )
文摘The optimum design of the highway excavation slope angle is one of the most important problems to the highway construction and to the slope improvement. The Dawu Section of Jingzhu (Beijing Zhuhai) Highway is taken as an example to illustrate the study method for excavation slope angle design. The analysis of the engineering condition from different angles with different factors shows that the stability of the slope is calculated by using residual pushing force and the Sarma method. Then the sensitive analysis of the slope stability is conducted by using residual pushing force method. Finally, the optimum angle of design is presented on the precondition of ensuring the whole stability of slope and the economic reasonability. The study results show that the most sensitive factors are the shear strength parameter and the seismic force, and that the optimum excavation slope angle is 60°.
文摘Haibat Sultan Mountain is a long range with elevation of about 860 m (a.s.l.);the PilaSpi Formation forms its carapace in Koya vicinity, with relief difference of about 300 m from Koisanjaq plain. The PilaSpi Formation consists of well thickly to massively bedded dolostone and dolomitic limestone with thickness of about 120 m in Koya vicinity. The main trend is NW - SE being a limb of Bustana anticline representing part of the southwestern limb, with dip amount that ranges from (15 - 30). On 11th of November 2015 a landslide had occurred after a heavy rainfall along Koya - Dukan main road. The type of the slide was plane sliding due to daylight slope, which was formed after the road cut. The length of the slide area: along the road is 90 m with height of 40 m forming almost a parallelogram shape;the thickness of the slid beds is about 2.5 m. The estimated volume of the slid mass is 9000 m<sup>3</sup>. The main cause of the landslide is the presence of daylight slope, high slope angle;more than the dip angle, presence of old crack surfaces which are filled by reddish brown clayey residual soil. After the he heavy rain fall, which lasted for 20 hours, the infiltrated rain water in the bedding planes in the well bedded, cracked, and jointed beds has increased the pore pressure and decreased the internal friction angle;therefore, the sliding has occurred. The root of the slid mass is below the base of the paved road;therefore, that part which is above the paved road has slid. The remaining part is highly cracked and partly accumulated in the base of the slid mass. Fortunately, the height of the slid mass is only 40 m and the relief difference between the crown area and the toe area is about 50 m;otherwise the slid mass would be larger than the present slid mass. From the field inspection, it is very clear that the involved area is very unstable and in critical equilibrium. The presence of daylight bedding above the crown area, clayey soil in the fractures and open joints and steep slope all are very favorable conditions for triggering the unstable slope, consequently developing of another landslide with larger mass.