The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane str...The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane strain test carried out with the traditional uniaxialtesting machine is suggested to provide the experimental data for calibration of anisotropic yield function. This simplified method byusing plane strain test was adopted to identify the parameters of Yld2000-2d yield function for 5xxx aluminum alloy and AlMgSialloy sheets. The predicted results of yield stresses, anisotropic coefficients and yield loci by the proposed method were very similarwith the experimental data and those by the equi-biaxial tensile test. It is validated that the plane strain test is effective to provideexperimental data instead of equi-biaxial tensile test for calibration of Yld2000-2d yield function.展开更多
To simulate the variety of big coal sample permeability during the rupture process under quasi-plane strain state, a series of experiments have been performed by a set of self-made coal-gas coupling test system. The t...To simulate the variety of big coal sample permeability during the rupture process under quasi-plane strain state, a series of experiments have been performed by a set of self-made coal-gas coupling test system. The test results indicate that the development trend between the permeability rate-strain curve and the stress-strain curve of big coal sample is almost consistent. The permeability rate-strain curve is general hysteretic to stress-strain curve, indicating the close relativity between the evolvement of damage and the development of permeability rate. However, there is time interval between them and the perme- ability rate peaks value when the sample reaches the softened stage after the peak stress. Based on the characteristics of per- meability rate-strain curve, three stages were plotted out: the stage before minimum permeability rate (/co), the stage between minimum and maximum of permeability rate and the stage after the maximum permeability rate (kmax). According to the three stages of permeability rate, the segmental curve equations of permeability rate-strain were fitted: the first stage can be fitted with negative exponential function; the second stage can be fitted with Boltzmann equation; and the last stage can be fitted with multinomial equation.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal str...Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.展开更多
Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated wit...Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated with the FLDo (W FLD0) in Marciniak test were studied by finite element simulation. WFLD0 was expressed as a function of the Lankford coefficients, n-value, k-value and sheet thickness and validated with various sheet materials. The determination of W FLD0 is of significance not only to reduce iterative attempts to accurately obtain FLDo, but also to obtain a full valid FLD with the least number of test specimens, which largely increases the efficiency and reduces cost to experimentally measure valid FLDs.展开更多
基金Project(P2018-013)supported by the Open Foundation of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane strain test carried out with the traditional uniaxialtesting machine is suggested to provide the experimental data for calibration of anisotropic yield function. This simplified method byusing plane strain test was adopted to identify the parameters of Yld2000-2d yield function for 5xxx aluminum alloy and AlMgSialloy sheets. The predicted results of yield stresses, anisotropic coefficients and yield loci by the proposed method were very similarwith the experimental data and those by the equi-biaxial tensile test. It is validated that the plane strain test is effective to provideexperimental data instead of equi-biaxial tensile test for calibration of Yld2000-2d yield function.
基金Supported by the Key Laboratory Project of Deep Mine Construction (HKLGF201202) the Nature Science Foundation of Education Department, Henan Province (2011 A440001) the State Key Laboratory Cultivation Base Project for Gas Geology and Gas Control (WS2012B06)
文摘To simulate the variety of big coal sample permeability during the rupture process under quasi-plane strain state, a series of experiments have been performed by a set of self-made coal-gas coupling test system. The test results indicate that the development trend between the permeability rate-strain curve and the stress-strain curve of big coal sample is almost consistent. The permeability rate-strain curve is general hysteretic to stress-strain curve, indicating the close relativity between the evolvement of damage and the development of permeability rate. However, there is time interval between them and the perme- ability rate peaks value when the sample reaches the softened stage after the peak stress. Based on the characteristics of per- meability rate-strain curve, three stages were plotted out: the stage before minimum permeability rate (/co), the stage between minimum and maximum of permeability rate and the stage after the maximum permeability rate (kmax). According to the three stages of permeability rate, the segmental curve equations of permeability rate-strain were fitted: the first stage can be fitted with negative exponential function; the second stage can be fitted with Boltzmann equation; and the last stage can be fitted with multinomial equation.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.
基金sponsored by the Central Level Scientific Research Institutes of Basic R&D Special Fund Business of the Institute of Crustal Dynamics,CEA(ZDJ2017-25)
文摘Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.
文摘Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated with the FLDo (W FLD0) in Marciniak test were studied by finite element simulation. WFLD0 was expressed as a function of the Lankford coefficients, n-value, k-value and sheet thickness and validated with various sheet materials. The determination of W FLD0 is of significance not only to reduce iterative attempts to accurately obtain FLDo, but also to obtain a full valid FLD with the least number of test specimens, which largely increases the efficiency and reduces cost to experimentally measure valid FLDs.