Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
The Ni-Al2O3 catalyst was prepared by the mechanochemical method in combination with a planetary ballmilling machine.Effect of milling time on the crystal structure,the reduction characteristics and the catalytic perf...The Ni-Al2O3 catalyst was prepared by the mechanochemical method in combination with a planetary ballmilling machine.Effect of milling time on the crystal structure,the reduction characteristics and the catalytic performance of Ni-Al2O3 catalyst for hydrogenation of 1,4-butynediol to produce 1,4-butenediol were investigated.The catalysts were characterized by PSD,EDX,XRD,H2-TPR,BET,TEM,and NH3-TPD methods.Results showed that the MCt2.5 catalyst treated at a ball milling time of 2.5 h could form a smallest particle size of 191.0 nm.The evaluation experiments revealed that the activity of the prepared catalyst increased at first and then reached a constant value with the extension of ballmilling time.The BYD conversion,BED selectivity and yield on the MCt2.5 catalyst reached 35.63%,33.48%and 32.46%,respectively,which were higher than those obtained by other samples.The excellent performance of MCt2.5 sample is mainly related to the following three reasons from characterization results.Firstly,it has a smallest particle size of 191.0 nm;and then,the surface acidity(in terms of strong acids)of the catalyst was weaker than other catalysts;and eventually,the loading amount(23.84%)of the active component Ni exceeded the theoretical value(20%).展开更多
The correlation between close-in super Earths and distant cold Jupiters in planetary systems has important implications for their formation and evolution.Contrary to some earlier findings,a recent study conducted by B...The correlation between close-in super Earths and distant cold Jupiters in planetary systems has important implications for their formation and evolution.Contrary to some earlier findings,a recent study conducted by Bonomo et al.suggests that the occurrence of cold Jupiter companions is not excessive in super-Earth systems.Here we show that this discrepancy can be seen as a Simpson’s paradox and is resolved once the metallicity dependence of the super-Earth-cold Jupiter relation is taken into account.A common feature is noticed that almost all the cold Jupiter detections with inner super-Earth companions are found around metal-rich stars.Focusing on the Sun-like hosts with super-solar metallicities,we show that the frequency of cold Jupiters conditioned on the presence of inner super Earths is 39_(-11)^(+12)%,whereas the frequency of cold Jupiters in the same metallicity range is no more than 20%.Therefore,the occurrences of close-in super Earths and distant cold Jupiters appear correlated around metal-rich hosts.The relation between the two types of planets remains unclear for stars with metal-poor hosts due to the limited sample size and the much lower occurrence rate of cold Jupiters,but a correlation between the two cannot be ruled out.展开更多
The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced li...The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced linear springs are used to describe the fitting status between internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis (FEA), the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.展开更多
This paper aims to investigate the nonlinear dynamic behaviors of an NGW planetary gear train with multi-clearances and manufacturing/assembling errors. For this purpose, an analytical translational- torsional coupled...This paper aims to investigate the nonlinear dynamic behaviors of an NGW planetary gear train with multi-clearances and manufacturing/assembling errors. For this purpose, an analytical translational- torsional coupled dynamic model is developed considering the effects of time-varying stiffness, gear backlashes and component errors. Based on the proposed model, the nonlinear differential equations of motion are derived and solved iteratively by the Runge-Kutta method. An NGW planetary gear reducer with three planets is taken as an example to analyze the effects of nonlinear factors. The results indicate that the backlashes induce complicated nonlinear dynamic behaviors in the gear train. With the increment of the backlashes, the gear system has experienced periodic responses, quasi-periodic response and chaos responses in sequence. When the planetary gear system is in a chaotic motion state, the vibration amplitude increases sharply, causing severe vibration and noise. The present study provides a fundamental basis for design and parameter optimization of NGW planetary gear trains.展开更多
The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless a...The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.展开更多
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and ...More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.展开更多
Discrete Element Method (DEM) is a powerful tool for simulating different types of mills. It also used for computing different types of particles such as rocks, grains, and molecules.</span></span><span...Discrete Element Method (DEM) is a powerful tool for simulating different types of mills. It also used for computing different types of particles such as rocks, grains, and molecules.</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM has been widely used in the field of rock mechanics. In the present work,</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM approach is applied to model the milling media (powder particles and balls) inside a planetary ball mill and to estimate the distribution of particles of a dry powder during milling. In fact, the efficiency of the DEM strongly depends on the input parameters. The DEM simulation results indicated that</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM is a promising tool for the simulation of the dynamic particles motion and interactions within planetary ball mill. These results could be utilized to further develop the synthesis performance, anticipate the reaction, and reduce the wear in the dry milling reactions.展开更多
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the ...We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790AU 〈 a 〈 5.900AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.展开更多
This article discusses the physical and kinematical characteristics of planetary nebulae accompanying PG 1159 central stars.The study is based on the parallax and proper motion measurements recently offered by the Gai...This article discusses the physical and kinematical characteristics of planetary nebulae accompanying PG 1159 central stars.The study is based on the parallax and proper motion measurements recently offered by the Gaia space mission.Two approaches were used to investigate the kinematical properties of the sample.The results revealed that most of the studied nebulae arise from progenitor stars in the mass range 0.9-1.75 M⊙.Furthermore,they tend to live within the Galactic thick disk and move with an average peculiar velocity of 61.7±19.2 km s^(-1) at a mean vertical height of 469±79 pc.The locations of the PG 1159 stars on the H-R diagram indicate that they have an average final stellar mass and evolutionary age of 0.58±0.08 M⊙and 25.5±5.3×103 yr,respectively.We found a good agreement between the mean evolutionary age of the PG 1159 stars and the mean dynamical age of their companion planetary nebulae(28.0±6.4×103 yr).展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
基金This work has been supported by the Xinjiang Uygur Autonomous Region Key R&D Program(2017B02012)the Xinjiang University Natural Science Foundation Project(BS160221).
文摘The Ni-Al2O3 catalyst was prepared by the mechanochemical method in combination with a planetary ballmilling machine.Effect of milling time on the crystal structure,the reduction characteristics and the catalytic performance of Ni-Al2O3 catalyst for hydrogenation of 1,4-butynediol to produce 1,4-butenediol were investigated.The catalysts were characterized by PSD,EDX,XRD,H2-TPR,BET,TEM,and NH3-TPD methods.Results showed that the MCt2.5 catalyst treated at a ball milling time of 2.5 h could form a smallest particle size of 191.0 nm.The evaluation experiments revealed that the activity of the prepared catalyst increased at first and then reached a constant value with the extension of ballmilling time.The BYD conversion,BED selectivity and yield on the MCt2.5 catalyst reached 35.63%,33.48%and 32.46%,respectively,which were higher than those obtained by other samples.The excellent performance of MCt2.5 sample is mainly related to the following three reasons from characterization results.Firstly,it has a smallest particle size of 191.0 nm;and then,the surface acidity(in terms of strong acids)of the catalyst was weaker than other catalysts;and eventually,the loading amount(23.84%)of the active component Ni exceeded the theoretical value(20%).
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173021 and 12133005)CASSACA grant CCJRF2105。
文摘The correlation between close-in super Earths and distant cold Jupiters in planetary systems has important implications for their formation and evolution.Contrary to some earlier findings,a recent study conducted by Bonomo et al.suggests that the occurrence of cold Jupiter companions is not excessive in super-Earth systems.Here we show that this discrepancy can be seen as a Simpson’s paradox and is resolved once the metallicity dependence of the super-Earth-cold Jupiter relation is taken into account.A common feature is noticed that almost all the cold Jupiter detections with inner super-Earth companions are found around metal-rich stars.Focusing on the Sun-like hosts with super-solar metallicities,we show that the frequency of cold Jupiters conditioned on the presence of inner super Earths is 39_(-11)^(+12)%,whereas the frequency of cold Jupiters in the same metallicity range is no more than 20%.Therefore,the occurrences of close-in super Earths and distant cold Jupiters appear correlated around metal-rich hosts.The relation between the two types of planets remains unclear for stars with metal-poor hosts due to the limited sample size and the much lower occurrence rate of cold Jupiters,but a correlation between the two cannot be ruled out.
基金Key Project of Ministry of Education of China (No.106050).
文摘The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced linear springs are used to describe the fitting status between internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis (FEA), the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.
基金Funded by the National Natural Science Foundation of China(Grant No.51375013)the Anhui Provincial Natural Science Foundation(Grant No.1208085ME64)
文摘This paper aims to investigate the nonlinear dynamic behaviors of an NGW planetary gear train with multi-clearances and manufacturing/assembling errors. For this purpose, an analytical translational- torsional coupled dynamic model is developed considering the effects of time-varying stiffness, gear backlashes and component errors. Based on the proposed model, the nonlinear differential equations of motion are derived and solved iteratively by the Runge-Kutta method. An NGW planetary gear reducer with three planets is taken as an example to analyze the effects of nonlinear factors. The results indicate that the backlashes induce complicated nonlinear dynamic behaviors in the gear train. With the increment of the backlashes, the gear system has experienced periodic responses, quasi-periodic response and chaos responses in sequence. When the planetary gear system is in a chaotic motion state, the vibration amplitude increases sharply, causing severe vibration and noise. The present study provides a fundamental basis for design and parameter optimization of NGW planetary gear trains.
基金Supported by National Natural Science Foundation of China(Grant Nos.52065053,51875458)Natural Science Foundation of Inner Mongolia(Grant No.2020BS05003)Inner Mongolia Science and Technology Project(Grant No.2020GG0288).
文摘The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.
基金funded by the German Space Agency (DLR) under grant Nos. 50WM0336, 50WM0636 and 50WM0936the Deutsche Forschungsgemeinschaft (DFG) under grant No. Bl298/7-1
文摘More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.
文摘Discrete Element Method (DEM) is a powerful tool for simulating different types of mills. It also used for computing different types of particles such as rocks, grains, and molecules.</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM has been widely used in the field of rock mechanics. In the present work,</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM approach is applied to model the milling media (powder particles and balls) inside a planetary ball mill and to estimate the distribution of particles of a dry powder during milling. In fact, the efficiency of the DEM strongly depends on the input parameters. The DEM simulation results indicated that</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">DEM is a promising tool for the simulation of the dynamic particles motion and interactions within planetary ball mill. These results could be utilized to further develop the synthesis performance, anticipate the reaction, and reduce the wear in the dry milling reactions.
基金Supported by the National Natural Science Foundation of China
文摘We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790AU 〈 a 〈 5.900AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.
文摘This article discusses the physical and kinematical characteristics of planetary nebulae accompanying PG 1159 central stars.The study is based on the parallax and proper motion measurements recently offered by the Gaia space mission.Two approaches were used to investigate the kinematical properties of the sample.The results revealed that most of the studied nebulae arise from progenitor stars in the mass range 0.9-1.75 M⊙.Furthermore,they tend to live within the Galactic thick disk and move with an average peculiar velocity of 61.7±19.2 km s^(-1) at a mean vertical height of 469±79 pc.The locations of the PG 1159 stars on the H-R diagram indicate that they have an average final stellar mass and evolutionary age of 0.58±0.08 M⊙and 25.5±5.3×103 yr,respectively.We found a good agreement between the mean evolutionary age of the PG 1159 stars and the mean dynamical age of their companion planetary nebulae(28.0±6.4×103 yr).