After expatiating the guiding ideology,contents,standards and principles of eco-environment restoration based on enlarging terrace and de-farming,this paper discussed the planning method and technical flow of enlargin...After expatiating the guiding ideology,contents,standards and principles of eco-environment restoration based on enlarging terrace and de-farming,this paper discussed the planning method and technical flow of enlarging terrace and garden plot in a small catchment of loess hilly region by means of GIS spatial analysis technology,and then the planning method was applied in Yangou catchment.The result showed that it is practicabl,and the areas of newly-built terrace and garden plot in Yangou catchment are at least 295.06 and 4.61 hm2,so that the areas of basic farmland and garden plot reach 359.23 and 622.69 hm2.After the land use structure is regulated,the forest coverage is 48.87%,and the permanent vegetation coverage is about 75% in Yangou catchment,while sediment reduction benefit is above 80% in slope land.In agricultural development,Yangou catchment can yield 1 645.13 tons of food supplies,above 9 340 tons of apples,and can feed 7 500 sheep every year.展开更多
This paper proposes a sectionalizing planning for parallel power system restoration after a complete system blackout.Parallel restoration is conducted in order to reduce the total restoration process time.Physical and...This paper proposes a sectionalizing planning for parallel power system restoration after a complete system blackout.Parallel restoration is conducted in order to reduce the total restoration process time.Physical and operation knowledge of the system,operating personnel experience,and computer simulation are combined in this planning to improve the system restoration and serve as a guidance for system operators/planners.Sectionalizing planning is obtained using discrete evolutionary programming optimization method assisted by heuristic initialization and graph theory approach.Set of transmission lines that should not be restored during parallel restoration process(cut set)is determined in order to sectionalize the system into subsystems or islands.Each island with almost similar restoration time is set as an objective function so as to speed up the resynchronization of the islands.Restoration operation and constraints(black start generator availability,load-generation balance and maintaining acceptable voltage magnitude within each island)is also takeninto account in the course of this planning.The method is validated using the IEEE 39-bus and 118-bus system.Promising results in terms of restoration time was compared to other methods reported in the literature.展开更多
基金Supported by National Natural Science Foundation of China(41171449)Key Project of Chinese Academy of Sciences(KZZD-EW-06-01)
文摘After expatiating the guiding ideology,contents,standards and principles of eco-environment restoration based on enlarging terrace and de-farming,this paper discussed the planning method and technical flow of enlarging terrace and garden plot in a small catchment of loess hilly region by means of GIS spatial analysis technology,and then the planning method was applied in Yangou catchment.The result showed that it is practicabl,and the areas of newly-built terrace and garden plot in Yangou catchment are at least 295.06 and 4.61 hm2,so that the areas of basic farmland and garden plot reach 359.23 and 622.69 hm2.After the land use structure is regulated,the forest coverage is 48.87%,and the permanent vegetation coverage is about 75% in Yangou catchment,while sediment reduction benefit is above 80% in slope land.In agricultural development,Yangou catchment can yield 1 645.13 tons of food supplies,above 9 340 tons of apples,and can feed 7 500 sheep every year.
文摘This paper proposes a sectionalizing planning for parallel power system restoration after a complete system blackout.Parallel restoration is conducted in order to reduce the total restoration process time.Physical and operation knowledge of the system,operating personnel experience,and computer simulation are combined in this planning to improve the system restoration and serve as a guidance for system operators/planners.Sectionalizing planning is obtained using discrete evolutionary programming optimization method assisted by heuristic initialization and graph theory approach.Set of transmission lines that should not be restored during parallel restoration process(cut set)is determined in order to sectionalize the system into subsystems or islands.Each island with almost similar restoration time is set as an objective function so as to speed up the resynchronization of the islands.Restoration operation and constraints(black start generator availability,load-generation balance and maintaining acceptable voltage magnitude within each island)is also takeninto account in the course of this planning.The method is validated using the IEEE 39-bus and 118-bus system.Promising results in terms of restoration time was compared to other methods reported in the literature.