Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathoge...Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.展开更多
Phenazines are secondary metabolites with broad spectrum antibiotic activity and thus show high potential in biological control of pathogens. In this study, we identified phenazine biosynthesis (phz) genes in two ge...Phenazines are secondary metabolites with broad spectrum antibiotic activity and thus show high potential in biological control of pathogens. In this study, we identified phenazine biosynthesis (phz) genes in two genome-completed plant pathogenic bacteria Pseudomonas syringae pv. tomato (Pst) DC3000 and Xanthomonas oryzae pv. oryzae (Xoo) PXO99A. Unlike the phz genes in typical phenazine-producing pseudomonads, phz homologs in Pst DC3000 and Xoo PXO99A consisted of phzC/D/E/F/G and phzC/E1/E2/F/G, respectively, and the both were not organized into an operon. Detection experiments demonstrated that phenazine-l-carboxylic acid (PCA) of Pst DC3000 accumulated to 13.4 IJg L-1, while that of Xoo PXO99A was almost undetectable. Moreover, Pst DC3000 was resistant to 1 mg mL-1 PCA, while Xoo PXO99A was sensitive to 50 IJg mL ~ PCA. Furthermore, mutation of phzF blocked the PCA production and significantly reduced the pathogenicity of Pst DC3000 in tomato, while the complementary strains restored these phenotypes. These results revealed that Pst DC3000 produces low level of and is resistant to phenazines and thus is unable to be biologically controlled by phenazines. Additionally, phz-mediated PCA production is required for full pathogenicity of Pst DC3000. To our knowledge, this is the first report of PCA production and its function in pathogenicity of a plant pathogenic P. syringae strain.展开更多
Objective:To assess the antibacterial activity of 5 selected plants against 4 pathogenic bacteria.Methods:Three solvents with different polarities were used to extract antimicrobial agents from the plants via macerati...Objective:To assess the antibacterial activity of 5 selected plants against 4 pathogenic bacteria.Methods:Three solvents with different polarities were used to extract antimicrobial agents from the plants via maceration technique.The agar-disc diffusion technique was adopted to primarily screen antibacterial activities.Broth-dilution assay was employed to determine the minimum inhibitory concentration(MIC)and the minimum bactericidal concentration(MBC).Results:Among all extracts,the ethanol extract of Piper betle Linn showed the highest antibacterial activity against Gram-positive and the negative bacteria.MIC and MBC of the ethanol extract of Piper betle Linn against Salmonella typhimurium were the same(1?562.50 mg/L);while it showed the highest MIC and MBC against Pseudomonas aeruginosa of 6?250 mg/L and 12?500 mg/L,respectively.Conclusions:Salmonella typhimurium is the most susceptible bacteria while Pseudomonas aeruginosa is the most resistant bacteria towards the ethanol extract of Piper betle Linn.Piper betle possesses compounds with potential antibacterial activity and might be useful as an alternative to control infectious diseases.展开更多
Plant pathogenic bacteria are recognized to be harmful microbes able to decrease the quantity and quality of crop production in the world. Punica granatum peel was screened for its potential use as biological control ...Plant pathogenic bacteria are recognized to be harmful microbes able to decrease the quantity and quality of crop production in the world. Punica granatum peel was screened for its potential use as biological control agent for plant pathogenic bacteria. P. granatum peel was successfully extract using n-hexane, methanol and ethyl acetate by maceration. The highest yield obtained by ethyl acetate showed that ethyl acetate extracted more compounds that readily soluble to methanol and n-hexane. For in-vitro antibacterial activity, three different species of plant pathogenic bacteria were used namely Erwinia carotovorum subsp. Carotovorum, Ralstonia solanacearum, and Xanthomonas gardneri. For all crude extracts, four different concentrations 25, 50, 100 and 200 mg/ml were used in cup-plate agar diffusion method. Streptomycin sulfate at concentration 30 μg/ml was used as positive control while each respective solvent used for peel extraction was used as negative control. The results obtained from in vitro studies showed only ethyl acetate extract possessed antibacterial activity tested on the plant pathogenic bacteria. Methanol and n-hexane did not show any antibacterial activity against plant pathogenic bacteria selected where no inhibition zones were recorded. R. solanacearum recorded the highest diameter of inhibition zones for all range of concentrations introduced followed by E. carotovorum subsp. Carotovorum and X. gardneri. For the minimum inhbitory concentration (MIC) and minimum bactericidal concentration (MBC), only the ethyl acetate extract was subjected to the assay as only ethyl acetate extract exhibited antibacterial activity. The minimum concentration of ethyl acetate extract that was able to inhibit plant pathogenic bacteria was recorded at a concentration of 3.12 mg/ml which inhibited R. solancearum and E. carotovorum subsp. Carotovorum, followed by X. gardneri at concentration 6.25 mg/ml. For the minimum bactericidal concentration (MBC), the results showed that at the concentration of 12.5 mg/ml, the extract was still capable of killing the pathogenic bacteria, R. solanacearum, and P. caratovora sub.sp. caratovora while for the bacteria X. gardneri, the concentration that was able to kill the bacteria was 25 mg/ml. The qualitative estimation of phytochemical constituents within P. granatum L. ethyl acetate peel extracts had revealed the presence of tannins, flavonoids, phenols alkaloid, Saponins, and terpenoids. This study has demonstrated that Ethyl Acetate peel extracts of P. granatum has significant antibacterial activity against pathogenic plant bacterial, and it could be of high agricultural value.展开更多
It is demonstrated that (3Z)-nonenal (NON) and (3Z)-hexenal (HEX) are oxidized in a cascade by lipoxygenase (LOX) and hydroperoxide peroxygenase (HP peroxygenase) into (2E)-4-hydroxy-2- nonenal (HNE) and (2E)-4-hydrox...It is demonstrated that (3Z)-nonenal (NON) and (3Z)-hexenal (HEX) are oxidized in a cascade by lipoxygenase (LOX) and hydroperoxide peroxygenase (HP peroxygenase) into (2E)-4-hydroxy-2- nonenal (HNE) and (2E)-4-hydroxy-2-hexenal (HHE), respectively. In turn, HNE inactivates LOX terminating the cascade. The hydroxy-alkenals produced serve to inhibit plant pathogens, which initiated the cascade. In addition to LOX, other unknown oxygenases may be involved in the cascade.展开更多
Pharmaceutical wastewater treatment plants(WWTPs) are thought to be a "seedbed" and reservoirs for multi-antibiotic resistant pathogenic bacteria which can be transmitted to the air environment through aeration. W...Pharmaceutical wastewater treatment plants(WWTPs) are thought to be a "seedbed" and reservoirs for multi-antibiotic resistant pathogenic bacteria which can be transmitted to the air environment through aeration. We quantified airborne multi-antibiotic resistance in a full-scale plant to treat antibiotics-producing wastewater by collecting bioaerosol samples from December2014 to July 2015. Gram-negative opportunistic pathogenic bacteria(GNOPB) were isolated, and antibiotic susceptibility tests against 18 commonly used antibiotics, including 11 β-lactam antibiotics, 3 aminoglycosides, 2 fluoroquinolones, 1 furan and 1 sulfonamide, were conducted.More than 45% of airborne bacteria isolated from the pharmaceutical WWTP were resistant to three or more antibiotics, and some opportunistic pathogenic strains were resistant to 16 antibiotics, whereas 45.3% and 50.3% of the strains isolated from residential community and municipal WWTP showed resistance to three or more antibiotics. The calculation of the multiple antibiotic resistance(MAR) index demonstrated that the air environment in the pharmaceutical WWTP was highly impacted by antibiotic resistance, while the residential community and municipal WWTP was less impacted by antibiotic resistance. In addition, we determined that the dominant genera of opportunistic pathogenic bacteria isolated from all bioaerosol samples were Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Escherichia, Klebsiella, Pantoea, Pseudomonas and Sphingomonas. Collectively, these results indicate the proliferations and spread of antibiotic resistance through bioaerosols in WWTP treating cephalosporin-producing wastewater, which imposed a potential health risk for the staff and residents in the neighborhood, calling for administrative measures to minimize the air-transmission hazard.展开更多
污水中普遍存在大量病原菌,污水处理厂作为接收和处理污水的主要场所,在控制病原菌污染和保障再生水安全中发挥重要作用。研究利用16S r RNA测序技术和实时荧光定量PCR技术对中国北方一座污水处理厂夏、冬两季的细菌群落结构和病原细菌...污水中普遍存在大量病原菌,污水处理厂作为接收和处理污水的主要场所,在控制病原菌污染和保障再生水安全中发挥重要作用。研究利用16S r RNA测序技术和实时荧光定量PCR技术对中国北方一座污水处理厂夏、冬两季的细菌群落结构和病原细菌存在情况进行分析。研究结果表明,共检出27个病原菌菌属,其中假单胞菌属(Pseudomonas)、不动杆菌属(Acinetobacter)是主要病原菌属。经过一系列工艺处理,出水中含有病原菌属数目和含量明显降低,但发现常规出水检测指标大肠杆菌不能指示其他病原菌的存在情况和风险水平,提示仍需引入新的检测指标减少再生水回用的病原菌风险。展开更多
Composting plants are regarded as one of the important sources of environmental bioaerosols.However,limitations in the size distribution of airborne bacteria have prevented our comprehensive understanding of their ris...Composting plants are regarded as one of the important sources of environmental bioaerosols.However,limitations in the size distribution of airborne bacteria have prevented our comprehensive understanding of their risk to human health and their dispersal behavior.In this study,different sizes of airborne bacteria were collected using an eight-stage impactor from a full-scale composting facility.Size-related abundance and communities of airborne bacteria as well as human pathogenic bacteria(HPB)were investigated using 16S rRNA gene sequencing coupled with droplet digital PCR.Our results indicate that the bacterial concentrations from the eight stages were approximately 10^(4)-105copies/m^(3).Although no statistical correlation was detected between the particle size and the Shannon index,the influence of size on bacterial lineages was observed in both composting and packaging areas.For airborne bacteria from different stages,the dominant phyla were Firmicutes,Proteobacteria,and Actinobacteria,and the dominant genera was Bacillus.Seven out of eight HPB with a small geometric mean aerodynamic diameter had a high concentration in composting areas.Based on diameters of 2.42 to 5.09μm,most HPB in the composting areas were expected to be deposited on the bronchus and secondary bronchus.However,in the packaging areas,the deposition of HPB(diameters 3.70 to 8.96μm)occurred in the upper part of the respiratory tract.Our results on the size distribution,abundance,and diversity of these bacteria offer important information for the systematic evaluation of bacterial pathogenicity and the potential health impacts on workers in composting plants and the surrounding residents.展开更多
基金financially supported by the Third Xinjiang Comprehensive Scientific Expedition (2022xjkk020605)the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program) (2020E01047)supported by the Introduction Project of High-level Talents in Xinjiang Uygur Autonomous Region, China
文摘Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.
基金supported by the grants from the Genetically Modified Organisms Breeding Major Projects, China (2014ZX0800905B)the Fundamental Research Funds for the Central Universities, Chinathe Program for New Century 151 Talents of Zhejiang Province, China
文摘Phenazines are secondary metabolites with broad spectrum antibiotic activity and thus show high potential in biological control of pathogens. In this study, we identified phenazine biosynthesis (phz) genes in two genome-completed plant pathogenic bacteria Pseudomonas syringae pv. tomato (Pst) DC3000 and Xanthomonas oryzae pv. oryzae (Xoo) PXO99A. Unlike the phz genes in typical phenazine-producing pseudomonads, phz homologs in Pst DC3000 and Xoo PXO99A consisted of phzC/D/E/F/G and phzC/E1/E2/F/G, respectively, and the both were not organized into an operon. Detection experiments demonstrated that phenazine-l-carboxylic acid (PCA) of Pst DC3000 accumulated to 13.4 IJg L-1, while that of Xoo PXO99A was almost undetectable. Moreover, Pst DC3000 was resistant to 1 mg mL-1 PCA, while Xoo PXO99A was sensitive to 50 IJg mL ~ PCA. Furthermore, mutation of phzF blocked the PCA production and significantly reduced the pathogenicity of Pst DC3000 in tomato, while the complementary strains restored these phenotypes. These results revealed that Pst DC3000 produces low level of and is resistant to phenazines and thus is unable to be biologically controlled by phenazines. Additionally, phz-mediated PCA production is required for full pathogenicity of Pst DC3000. To our knowledge, this is the first report of PCA production and its function in pathogenicity of a plant pathogenic P. syringae strain.
基金This research was financially supported by the National Research Council of Thailand,Thailand and Kalasin University,Thailand.The authors also thanks the Department of Science and Mathematics,Faculty of Science and Health Technology and the Department of Biotechnology,Faculty of Agricultural Technology,Kalasin University for providing instruments.
文摘Objective:To assess the antibacterial activity of 5 selected plants against 4 pathogenic bacteria.Methods:Three solvents with different polarities were used to extract antimicrobial agents from the plants via maceration technique.The agar-disc diffusion technique was adopted to primarily screen antibacterial activities.Broth-dilution assay was employed to determine the minimum inhibitory concentration(MIC)and the minimum bactericidal concentration(MBC).Results:Among all extracts,the ethanol extract of Piper betle Linn showed the highest antibacterial activity against Gram-positive and the negative bacteria.MIC and MBC of the ethanol extract of Piper betle Linn against Salmonella typhimurium were the same(1?562.50 mg/L);while it showed the highest MIC and MBC against Pseudomonas aeruginosa of 6?250 mg/L and 12?500 mg/L,respectively.Conclusions:Salmonella typhimurium is the most susceptible bacteria while Pseudomonas aeruginosa is the most resistant bacteria towards the ethanol extract of Piper betle Linn.Piper betle possesses compounds with potential antibacterial activity and might be useful as an alternative to control infectious diseases.
文摘Plant pathogenic bacteria are recognized to be harmful microbes able to decrease the quantity and quality of crop production in the world. Punica granatum peel was screened for its potential use as biological control agent for plant pathogenic bacteria. P. granatum peel was successfully extract using n-hexane, methanol and ethyl acetate by maceration. The highest yield obtained by ethyl acetate showed that ethyl acetate extracted more compounds that readily soluble to methanol and n-hexane. For in-vitro antibacterial activity, three different species of plant pathogenic bacteria were used namely Erwinia carotovorum subsp. Carotovorum, Ralstonia solanacearum, and Xanthomonas gardneri. For all crude extracts, four different concentrations 25, 50, 100 and 200 mg/ml were used in cup-plate agar diffusion method. Streptomycin sulfate at concentration 30 μg/ml was used as positive control while each respective solvent used for peel extraction was used as negative control. The results obtained from in vitro studies showed only ethyl acetate extract possessed antibacterial activity tested on the plant pathogenic bacteria. Methanol and n-hexane did not show any antibacterial activity against plant pathogenic bacteria selected where no inhibition zones were recorded. R. solanacearum recorded the highest diameter of inhibition zones for all range of concentrations introduced followed by E. carotovorum subsp. Carotovorum and X. gardneri. For the minimum inhbitory concentration (MIC) and minimum bactericidal concentration (MBC), only the ethyl acetate extract was subjected to the assay as only ethyl acetate extract exhibited antibacterial activity. The minimum concentration of ethyl acetate extract that was able to inhibit plant pathogenic bacteria was recorded at a concentration of 3.12 mg/ml which inhibited R. solancearum and E. carotovorum subsp. Carotovorum, followed by X. gardneri at concentration 6.25 mg/ml. For the minimum bactericidal concentration (MBC), the results showed that at the concentration of 12.5 mg/ml, the extract was still capable of killing the pathogenic bacteria, R. solanacearum, and P. caratovora sub.sp. caratovora while for the bacteria X. gardneri, the concentration that was able to kill the bacteria was 25 mg/ml. The qualitative estimation of phytochemical constituents within P. granatum L. ethyl acetate peel extracts had revealed the presence of tannins, flavonoids, phenols alkaloid, Saponins, and terpenoids. This study has demonstrated that Ethyl Acetate peel extracts of P. granatum has significant antibacterial activity against pathogenic plant bacterial, and it could be of high agricultural value.
文摘It is demonstrated that (3Z)-nonenal (NON) and (3Z)-hexenal (HEX) are oxidized in a cascade by lipoxygenase (LOX) and hydroperoxide peroxygenase (HP peroxygenase) into (2E)-4-hydroxy-2- nonenal (HNE) and (2E)-4-hydroxy-2-hexenal (HHE), respectively. In turn, HNE inactivates LOX terminating the cascade. The hydroxy-alkenals produced serve to inhibit plant pathogens, which initiated the cascade. In addition to LOX, other unknown oxygenases may be involved in the cascade.
基金supported by the National Natural Science Foundation of China(No.51478237)
文摘Pharmaceutical wastewater treatment plants(WWTPs) are thought to be a "seedbed" and reservoirs for multi-antibiotic resistant pathogenic bacteria which can be transmitted to the air environment through aeration. We quantified airborne multi-antibiotic resistance in a full-scale plant to treat antibiotics-producing wastewater by collecting bioaerosol samples from December2014 to July 2015. Gram-negative opportunistic pathogenic bacteria(GNOPB) were isolated, and antibiotic susceptibility tests against 18 commonly used antibiotics, including 11 β-lactam antibiotics, 3 aminoglycosides, 2 fluoroquinolones, 1 furan and 1 sulfonamide, were conducted.More than 45% of airborne bacteria isolated from the pharmaceutical WWTP were resistant to three or more antibiotics, and some opportunistic pathogenic strains were resistant to 16 antibiotics, whereas 45.3% and 50.3% of the strains isolated from residential community and municipal WWTP showed resistance to three or more antibiotics. The calculation of the multiple antibiotic resistance(MAR) index demonstrated that the air environment in the pharmaceutical WWTP was highly impacted by antibiotic resistance, while the residential community and municipal WWTP was less impacted by antibiotic resistance. In addition, we determined that the dominant genera of opportunistic pathogenic bacteria isolated from all bioaerosol samples were Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Escherichia, Klebsiella, Pantoea, Pseudomonas and Sphingomonas. Collectively, these results indicate the proliferations and spread of antibiotic resistance through bioaerosols in WWTP treating cephalosporin-producing wastewater, which imposed a potential health risk for the staff and residents in the neighborhood, calling for administrative measures to minimize the air-transmission hazard.
文摘污水中普遍存在大量病原菌,污水处理厂作为接收和处理污水的主要场所,在控制病原菌污染和保障再生水安全中发挥重要作用。研究利用16S r RNA测序技术和实时荧光定量PCR技术对中国北方一座污水处理厂夏、冬两季的细菌群落结构和病原细菌存在情况进行分析。研究结果表明,共检出27个病原菌菌属,其中假单胞菌属(Pseudomonas)、不动杆菌属(Acinetobacter)是主要病原菌属。经过一系列工艺处理,出水中含有病原菌属数目和含量明显降低,但发现常规出水检测指标大肠杆菌不能指示其他病原菌的存在情况和风险水平,提示仍需引入新的检测指标减少再生水回用的病原菌风险。
基金the Beijing Agriculture Innovation Consortium(Grant No.BAIC04-2020)the Research Foundation of BAAFS(Grant No.KJCX20200402)+3 种基金the National Natural Science Foundation of China(Grant Nos.51878053,41961134033)the Beijing Natural Science Foundation(Grant No.6182019)the Key Research and Development Program of Ningxia Autonomous Region(Grant No.2019BFG02015)the National Key R&D Plan(Grant Nos.2016YFD0800205,2017YFD0801402).
文摘Composting plants are regarded as one of the important sources of environmental bioaerosols.However,limitations in the size distribution of airborne bacteria have prevented our comprehensive understanding of their risk to human health and their dispersal behavior.In this study,different sizes of airborne bacteria were collected using an eight-stage impactor from a full-scale composting facility.Size-related abundance and communities of airborne bacteria as well as human pathogenic bacteria(HPB)were investigated using 16S rRNA gene sequencing coupled with droplet digital PCR.Our results indicate that the bacterial concentrations from the eight stages were approximately 10^(4)-105copies/m^(3).Although no statistical correlation was detected between the particle size and the Shannon index,the influence of size on bacterial lineages was observed in both composting and packaging areas.For airborne bacteria from different stages,the dominant phyla were Firmicutes,Proteobacteria,and Actinobacteria,and the dominant genera was Bacillus.Seven out of eight HPB with a small geometric mean aerodynamic diameter had a high concentration in composting areas.Based on diameters of 2.42 to 5.09μm,most HPB in the composting areas were expected to be deposited on the bronchus and secondary bronchus.However,in the packaging areas,the deposition of HPB(diameters 3.70 to 8.96μm)occurred in the upper part of the respiratory tract.Our results on the size distribution,abundance,and diversity of these bacteria offer important information for the systematic evaluation of bacterial pathogenicity and the potential health impacts on workers in composting plants and the surrounding residents.