Light Detection and Ranging(LiDAR) systems can be used to estimate both vertical and horizontal forest structure.Woody components,the leaves of trees and the understory can be described with high precision,using geo-r...Light Detection and Ranging(LiDAR) systems can be used to estimate both vertical and horizontal forest structure.Woody components,the leaves of trees and the understory can be described with high precision,using geo-registered 3D-points.Based on this concept,the Effective Plant Area Indices(PAIe) for areas of Korean Pine(Pinus koraiensis),Japanese Larch(Larix leptolepis) and Oak(Quercus spp.) were estimated by calculating the ratio of intercepted and incident LIDAR laser rays for the canopies of the three forest types.Initially,the canopy gap fraction(GLiDAR) was generated by extracting the LiDAR data reflected from the canopy surface,or inner canopy area,using k-means statistics.The LiDAR-derived PAIe was then estimated by using GLIDAR with the Beer-Lambert law.A comparison of the LiDAR-derived and field-derived PAIe revealed the coefficients of determination for Korean Pine,Japanese Larch and Oak to be 0.82,0.64 and 0.59,respectively.These differences between field-based and LIDAR-based PAIe for the different forest types were attributed to the amount of leaves and branches in the forest stands.The absence of leaves,in the case of both Larch and Oak,meant that the LiDAR pulses were only reflected from branches.The probability that the LiDAR pulses are reflected from bare branches is low as compared to the reflection from branches with a high leaf density.This is because the size of the branch is smaller than the resolution across and along the 1 meter LIDAR laser track.Therefore,a better predictive accuracy would be expected for the model if the study would be repeated in late spring when the shoots and leaves of the deciduous trees begin to appear.展开更多
A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecologic...A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecological experimental sites in 2006 and 2007. According to climatic data from 1951 to 2005, the differences in those factors and their effects on plant canopy were analyzed for four rice cropping areas in China, including South China, the middle-lower reaches of the Yangtze River, Sichuan Basin, and river valley in Yunnan, China. The thickness of leaf layer (the distance from pulvinus of the third leaf from the top to the tip of flag leaf) and distribution of leaf area could be used as candidate indices for the plant type of a rice canopy.展开更多
Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theo...Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants.展开更多
Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic...Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic models in irrigated lowland rice. Four field experiments were carried out in Jiangsu Province of East China from 2009 to 2014. Different N application rates and plant densities were used to generate contrasting conditions of N availability or population densities in rice. LAI was determined by LI-3000, and estimated indirectly by LAI-2000 during vegetative growth period. Group and individual plant characters (e.g., tiller number (TN) and plant height (H)) were investigated simultaneously. Two N indicators of plant N accumulation (NA) and N nutrition index (NNI) were measured as well. A calibration equation (LAI=1.7787LAI2o00-0.8816, R2=0.870") was developed for LAI-2000. The linear regression analysis showed a significant relationship between NA and actual LAI (R2=0.863^**). For the NNI, the relative LAI (R2=0.808-) was a relatively unbiased variable in the regression than the LAI (R^2=0.33^**). The results were used to formulate two LAI-based N diagnostic models for irrigated lowland rice (NA=29.778LAI-5.9397; NNI=0.7705RLAI+0.2764). Finally, a simple LAI deterministic model was developed to estimate the actual LAI using the characters of TN and H (LAI=-0.3375(THxHx0.01)2+3.665(TH×H×0.01)-1.8249, R2=0.875**). With these models, the N status of rice can be diagnosed conveniently in the field.展开更多
The current urban green space construction was guided by a two-dimensional index evaluation system, resulting in weak ecological benefits of green space. Green plot ratio (GPR), as a three-dimensional indicator, can c...The current urban green space construction was guided by a two-dimensional index evaluation system, resulting in weak ecological benefits of green space. Green plot ratio (GPR), as a three-dimensional indicator, can characterize the ecological benefits of green areas and the ability of green areas to participate in the operation and regulation of urban ecosystems. As an important component of urban green space, the GPR index was added to the two-dimensional index evaluation system to optimize the green space, which can promote the development of low-carbon, healthy and ecological green space. Based on the research of 22 residential districts in the central city of Chongqing, the Leaf area index (LAI) index of common native garden plants in Chongqing was formed to improve the accuracy of green capacity index measurement in Chongqing. The study also took the residential community of Sunrise City in Banan District of Chongqing as an example, and carried out the optimization design practice from four types of residential community green areas: green areas next to houses, road green areas, concentrated green areas, and green areas attached to public service facilities.展开更多
Three typical hybrid rice cultivars, together with three artificially modified plant types by the application of N fertilizer during the elongation of the two uppermost leaves were used to analyze how the plant type a...Three typical hybrid rice cultivars, together with three artificially modified plant types by the application of N fertilizer during the elongation of the two uppermost leaves were used to analyze how the plant type affected the layered leaf area and radiation transmission. Plant type factors, layered leaf area and radiation distribution were measured at the full heading, 10 d and 25 d after full heading stages, respectively. A model for calculating the layered leaf area from plant type factors was established and validated to determine the effects of plant type factors on the layered leaf area for the three hybrids. Furthermore, the relationship between layered leaf area and radiation transmission was established by using the radiation transmission model. The effects of the plant type factors on the radiation transmission for the three hybrids were evaluated by using this model. Finally, a method was established to describe the canopy structure, such as the layered leaf area index and the radiation distribution in the rice canopy.展开更多
Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct s...Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct seeding on ridges, transplanting on ridges and parachute planting) in transplanted and direct wet-seeded rice was undertaken at Dera Ismail Khan region of Pakistan's North West Frontier Province during 2002 and 2003. Among the planting techniques, the best performance for the yield formation and economic evaluation was noted for transplanting on flat during both years. Chinese parachute planting technology also showed very promising results in most of the parameters. Direct seeding on ridges could not excel transplanting on flat and parachute planting during both cropping seasons. The findings concluded the feasibility of parachute planting technology along with traditional rice transplanting on flat over all other planting techniques being practiced in the area.展开更多
株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株...株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。展开更多
夏直播棉花能够在较短生育期内获得与常规模式相当的产量,但其产量高效形成的机理及其与冠层微环境的关系仍不清楚。因此,本试验采用完全随机区组设计,设置6个种植密度(7.50株m^(–2)、8.25株m^(–2)、9.00株m^(–2)、9.75株m^(–2)、10...夏直播棉花能够在较短生育期内获得与常规模式相当的产量,但其产量高效形成的机理及其与冠层微环境的关系仍不清楚。因此,本试验采用完全随机区组设计,设置6个种植密度(7.50株m^(–2)、8.25株m^(–2)、9.00株m^(–2)、9.75株m^(–2)、10.50株m^(–2)和11.25株m^(–2)),于2022-2023年在湖北武汉进行了大田试验。采用温湿度仪记录从现蕾到拔杆期间冠层温度和湿度,冠层分析仪测定结铃期冠层不同高度光辐射强度,手工收获计产。结果表明,棉花产量随种植密度增加先升后降,其中9.75株m^(–2)最高(籽棉3246.5 kg hm^(–2)、皮棉1203.2 kg hm^(–2)), 2年平均较7.50株m^(–2)提高(15.0%和17.8%)。冠层日均温、最高温、最低温随种植密度增加而降低,而冠层相对湿度、最高湿度、最低湿度随种植密度增加而增加。冠层透光率,水平方向呈“V”型分布,棉行中间最大;垂直方向中下部(离地10^50cm)随种植密度增加而减小,上部(离地50^70cm)随种植密度增加而增大。群体叶面积指数随种植密度增加先升后降,其中9.75株m^(–2)最高,2年平均为2.6。相关分析表明,棉花产量随冠层日均温和最高温升高而降低,随冠层相对湿度和最高湿度增加而增加;随冠层中下部透光率增大而减小,随上部透光率增加而增大。综上,棉花夏直播种植模式,适当增加种植密度(9.75^11.25株m^(–2))有利于提高单位面积成铃数,改善冠层微环境,如冠层透光率70cm处85%以上,50 cm处37%^40%,30 cm处14%^16%,10 cm处9%以下,冠层温度26.5^27.0℃,冠层湿度74%^77%,从而提高棉花产量。展开更多
基金supported by a grant from the High Tech Urban Development Program funded by Ministry of Land,Transportation and Maritime Affairs of Korean government (Grant No. 07High Tech A01)a research grant from the Korea Science and Engineering Foundation (KOSEF) (Grant No. A307-K001)
文摘Light Detection and Ranging(LiDAR) systems can be used to estimate both vertical and horizontal forest structure.Woody components,the leaves of trees and the understory can be described with high precision,using geo-registered 3D-points.Based on this concept,the Effective Plant Area Indices(PAIe) for areas of Korean Pine(Pinus koraiensis),Japanese Larch(Larix leptolepis) and Oak(Quercus spp.) were estimated by calculating the ratio of intercepted and incident LIDAR laser rays for the canopies of the three forest types.Initially,the canopy gap fraction(GLiDAR) was generated by extracting the LiDAR data reflected from the canopy surface,or inner canopy area,using k-means statistics.The LiDAR-derived PAIe was then estimated by using GLIDAR with the Beer-Lambert law.A comparison of the LiDAR-derived and field-derived PAIe revealed the coefficients of determination for Korean Pine,Japanese Larch and Oak to be 0.82,0.64 and 0.59,respectively.These differences between field-based and LIDAR-based PAIe for the different forest types were attributed to the amount of leaves and branches in the forest stands.The absence of leaves,in the case of both Larch and Oak,meant that the LiDAR pulses were only reflected from branches.The probability that the LiDAR pulses are reflected from bare branches is low as compared to the reflection from branches with a high leaf density.This is because the size of the branch is smaller than the resolution across and along the 1 meter LIDAR laser track.Therefore,a better predictive accuracy would be expected for the model if the study would be repeated in late spring when the shoots and leaves of the deciduous trees begin to appear.
基金supported by the National Natural Science Foundation of China (Grant No. 30370830)
文摘A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecological experimental sites in 2006 and 2007. According to climatic data from 1951 to 2005, the differences in those factors and their effects on plant canopy were analyzed for four rice cropping areas in China, including South China, the middle-lower reaches of the Yangtze River, Sichuan Basin, and river valley in Yunnan, China. The thickness of leaf layer (the distance from pulvinus of the third leaf from the top to the tip of flag leaf) and distribution of leaf area could be used as candidate indices for the plant type of a rice canopy.
基金supported by the National Natural Science Foundation of China (NSFC,30871479)
文摘Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants.
基金supported by the Special Program for Agriculture Science and Technology from the Ministry of Agriculture of China (201303109)the National Key Research & Development Program of China (2016YFD0300604+3 种基金 2016YFD0200602)the Fundamental Research Funds for the Central Universities,China (262201602)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)the 111 Project of China (B16026)
文摘Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic models in irrigated lowland rice. Four field experiments were carried out in Jiangsu Province of East China from 2009 to 2014. Different N application rates and plant densities were used to generate contrasting conditions of N availability or population densities in rice. LAI was determined by LI-3000, and estimated indirectly by LAI-2000 during vegetative growth period. Group and individual plant characters (e.g., tiller number (TN) and plant height (H)) were investigated simultaneously. Two N indicators of plant N accumulation (NA) and N nutrition index (NNI) were measured as well. A calibration equation (LAI=1.7787LAI2o00-0.8816, R2=0.870") was developed for LAI-2000. The linear regression analysis showed a significant relationship between NA and actual LAI (R2=0.863^**). For the NNI, the relative LAI (R2=0.808-) was a relatively unbiased variable in the regression than the LAI (R^2=0.33^**). The results were used to formulate two LAI-based N diagnostic models for irrigated lowland rice (NA=29.778LAI-5.9397; NNI=0.7705RLAI+0.2764). Finally, a simple LAI deterministic model was developed to estimate the actual LAI using the characters of TN and H (LAI=-0.3375(THxHx0.01)2+3.665(TH×H×0.01)-1.8249, R2=0.875**). With these models, the N status of rice can be diagnosed conveniently in the field.
文摘The current urban green space construction was guided by a two-dimensional index evaluation system, resulting in weak ecological benefits of green space. Green plot ratio (GPR), as a three-dimensional indicator, can characterize the ecological benefits of green areas and the ability of green areas to participate in the operation and regulation of urban ecosystems. As an important component of urban green space, the GPR index was added to the two-dimensional index evaluation system to optimize the green space, which can promote the development of low-carbon, healthy and ecological green space. Based on the research of 22 residential districts in the central city of Chongqing, the Leaf area index (LAI) index of common native garden plants in Chongqing was formed to improve the accuracy of green capacity index measurement in Chongqing. The study also took the residential community of Sunrise City in Banan District of Chongqing as an example, and carried out the optimization design practice from four types of residential community green areas: green areas next to houses, road green areas, concentrated green areas, and green areas attached to public service facilities.
基金financially supported by the National Natural Science Foundation of China(Grant No.NSFC30871479)
文摘Three typical hybrid rice cultivars, together with three artificially modified plant types by the application of N fertilizer during the elongation of the two uppermost leaves were used to analyze how the plant type affected the layered leaf area and radiation transmission. Plant type factors, layered leaf area and radiation distribution were measured at the full heading, 10 d and 25 d after full heading stages, respectively. A model for calculating the layered leaf area from plant type factors was established and validated to determine the effects of plant type factors on the layered leaf area for the three hybrids. Furthermore, the relationship between layered leaf area and radiation transmission was established by using the radiation transmission model. The effects of the plant type factors on the radiation transmission for the three hybrids were evaluated by using this model. Finally, a method was established to describe the canopy structure, such as the layered leaf area index and the radiation distribution in the rice canopy.
文摘Rice production in Pakistan is constraint by many factors pertaining to prevalent planting techniques. A research on the feasibility of new planting techniques (direct seeding on flat, transplanting on flat, direct seeding on ridges, transplanting on ridges and parachute planting) in transplanted and direct wet-seeded rice was undertaken at Dera Ismail Khan region of Pakistan's North West Frontier Province during 2002 and 2003. Among the planting techniques, the best performance for the yield formation and economic evaluation was noted for transplanting on flat during both years. Chinese parachute planting technology also showed very promising results in most of the parameters. Direct seeding on ridges could not excel transplanting on flat and parachute planting during both cropping seasons. The findings concluded the feasibility of parachute planting technology along with traditional rice transplanting on flat over all other planting techniques being practiced in the area.
文摘株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。
文摘夏直播棉花能够在较短生育期内获得与常规模式相当的产量,但其产量高效形成的机理及其与冠层微环境的关系仍不清楚。因此,本试验采用完全随机区组设计,设置6个种植密度(7.50株m^(–2)、8.25株m^(–2)、9.00株m^(–2)、9.75株m^(–2)、10.50株m^(–2)和11.25株m^(–2)),于2022-2023年在湖北武汉进行了大田试验。采用温湿度仪记录从现蕾到拔杆期间冠层温度和湿度,冠层分析仪测定结铃期冠层不同高度光辐射强度,手工收获计产。结果表明,棉花产量随种植密度增加先升后降,其中9.75株m^(–2)最高(籽棉3246.5 kg hm^(–2)、皮棉1203.2 kg hm^(–2)), 2年平均较7.50株m^(–2)提高(15.0%和17.8%)。冠层日均温、最高温、最低温随种植密度增加而降低,而冠层相对湿度、最高湿度、最低湿度随种植密度增加而增加。冠层透光率,水平方向呈“V”型分布,棉行中间最大;垂直方向中下部(离地10^50cm)随种植密度增加而减小,上部(离地50^70cm)随种植密度增加而增大。群体叶面积指数随种植密度增加先升后降,其中9.75株m^(–2)最高,2年平均为2.6。相关分析表明,棉花产量随冠层日均温和最高温升高而降低,随冠层相对湿度和最高湿度增加而增加;随冠层中下部透光率增大而减小,随上部透光率增加而增大。综上,棉花夏直播种植模式,适当增加种植密度(9.75^11.25株m^(–2))有利于提高单位面积成铃数,改善冠层微环境,如冠层透光率70cm处85%以上,50 cm处37%^40%,30 cm处14%^16%,10 cm处9%以下,冠层温度26.5^27.0℃,冠层湿度74%^77%,从而提高棉花产量。